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Abstract. This work presents a planning framework that allows a robot
with stochastic action uncertainty to achieve a high-level task given
in the form of a temporal logic formula. The objective is to quickly
compute a feedback control policy to satisfy the task specification with
maximum probability. A top-down framework is proposed that abstracts
the motion of a continuous stochastic system to a discrete, bounded-
parameter Markov decision process (bmdp), and then computes a control
policy over the product of the bmdp abstraction and a dfa representing
the temporal logic specification. Analysis of the framework reveals that as
the resolution of the bmdp abstraction becomes finer, the policy obtained
converges to optimal. Simulations show that high-quality policies to satisfy
complex temporal logic specifications can be obtained in seconds, orders
of magnitude faster than existing methods.
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1 Introduction

Robots are rapidly becoming capable of performing a wide range of tasks with
a high-degree of autonomy. There is a growing desire to take full advantage of
these systems by allowing a human operator to dictate a high-level task to the
robot and let the robot itself decide the low-level details of how to accomplish
the task. Consider an automated warehouse where items are retrieved by a robot
and then dropped off at a central location for further processing. A single human
dispatcher can coordinate such tasks at a high-level by simply telling the robot
which items to gather. This is in contrast to lower-level coordination where a
technically savvy or highly trained operator must tell the robot how to gather
each item. By abstracting the motion planning objective into a high-level task,
the need for a human operator to reason over low-level details (e.g., the order
items are gathered) is obviated. There are two fundamental challenges, however,
that inhibit this high-level abstraction. First, translating a high-level specification
into an equivalent model fit for a motion planning algorithm is a computationally
difficult endeavor, typically an exponential-time operation [1]. Second, physical
robots suffer from uncertainties that can invalidate a motion plan, like noisy
actuation, unreliable sensing, or a changing environment, and robustly handling
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uncertainty can require significant computation time [2]. Extensive literature
exists for solving these challenges in isolation, but methods that are both efficient
and effective at high-level task planning for an uncertain system remain elusive.

High-level specifications using temporal logics have been employed to improve
the expressiveness of a motion planning task (e.g., [3–10]). These logics allow for
a natural encoding of both Boolean and temporal constraints, and the classic
motion planning task of move from start to goal without collision can be greatly
enhanced using these operators. For instance, in the warehouse scenario described
above, complex tasks such as

“Pick up items from locations A, B, and C, in any order, and drop them
off at location D” or
“Pick up items from locations A or B and then C and drop them off in D;
meanwhile, if B is ever visited, then avoid E”

are easily encoded using only temporal and Boolean operators. Given a motion
planning specification in the form of a temporal logic formula, existing frameworks
(e.g., [3–10]) consider a mixed discrete and continuous approach, where Boolean
propositions are mapped to discrete regions of the state space and planning is
performed in the continuous space to satisfy the specification.

When the robot is subject to action uncertainty, robust motion planners
have been developed that compute a control strategy over the entire state space
rather than a single trajectory (e.g., [11–13]). This strategy is often referred to
as a policy. Conceptually, a policy is a lookup table that maps each state to a
particular action. An optimal policy maximizes the reward the robot can expect
to receive given a stochastic motion model of its evolution. Computing an optimal
policy can take significant time, however, because every state of the system must
be reasoned over to ensure the action selected is indeed optimal.

This work operates at the intersection of high-level task planning and planning
under action uncertainty. A top-down framework is presented that is capable
of quickly computing an optimal control policy that satisfies a temporal logic
specification with maximum probability by utilizing a combination of discrete
and continuous space planning. To robustly handle noise in the actuation of the
robot, the method constructs an abstraction in the form of an uncertain Markov
model that models the evolution of the robot as it moves between discrete regions
of the state space. Given a temporal logic task specification, the framework then
constructs an equivalent deterministic finite automaton (dfa) that expresses the
task and computes an optimal control policy over the product of the dfa and the
discrete abstraction to maximize the probability of satisfying the specification.

1.1 Related Work

Motion planning for realistic robotic tasks is the subject of a large body of recent
work known as formal methods in robotics [3–10]. The kinds of tasks that are
studied typically admit a wide latitude of possible solutions; this is evident in
the tasks described earlier for the warehouse scenario. Many complex motion
planning scenarios can be naturally translated to temporal logics, in particular



linear temporal logic (ltl) [14]. Unfortunately, temporal logic planning suffers
from state space explosion, and existing methods rely on a discrete abstraction of
the continuous system to gain computational tractability.

One class of methods for temporal logic planning synthesize controllers over
a discrete abstraction of the state space [3, 5]. The relationship between the
controllers and a discretization of the space ensures that motion between adjacent
regions is realizable by the continuous system, known as a bisimilar abstraction.
Synthesis of reactive controllers have also been considered that allow for robust
control in a dynamic environment, provided that all environmental behaviors
are also encoded in temporal logic [4, 6, 15, 16]. These methods are correct-by-
construction, and find a satisfying trajectory if one exists. Synthesizing controllers
that satisfy the bisimilarity constraints, however, admits only simple dynamical
models. Recent work attempts reactive synthesis for non-linear systems [17], but
constructing these controllers remains computationally difficult.

Sampling-based motion planners have been augmented to satisfy a task
specification given in ltl [7, 8, 10, 18, 19]. These works are able to quickly emit a
satisfying trajectory for systems with hybrid and/or complex dynamics. Note that
these methods are not correct-by-construction. The probabilistic completeness of
many sampling-based planners, however, guarantees that if a satisfying trajectory
exists, the probability of finding a trajectory grows to 1 over time.

The temporal logic planning methods described above do not address instances
where the robot suffers from uncertainties. When there is uncertainty in actuation,
methods exist for temporal logic planning that employ a Markov decision process
(mdp) to model the evolution of the system through the state space [20, 21]. The
goal in these methods is to compute a control policy over the mdp abstraction to
satisfy a high-level task with maximum probability. These works are incomplete,
however, in that methods to construct the approximating mdp for the robot are
not presented; only planning over an existing abstraction is discussed. Uncertain
mdps, where transition probabilities can belong to sets of values, have also
been employed to provide a hierarchical abstraction and improve computational
complexity [22]. Strong assumptions must be made on the structure of this
abstraction, many of which are difficult to realize for physical systems.

Construction of a Markov abstraction for continuous-time and space systems
has been studied in the literature for stochastic optimal control. In the stochastic
motion roadmap (smr) [11], the state space is discretized through sampling and
an mdp is constructed over the sampled states using a Monte Carlo simulation;
a set of discrete actions is assumed. Another method is the incremental mdp
(imdp) algorithm [12], which asymptotically approximates the optimal policy of
the continuous stochastic system by sampling both a state and a set of candidate
controls; a single control is chosen for the state with value iteration. To ensure
a good approximation of the optimal policy, both smr and imdp construct
a highly accurate mdp abstraction. Achieving the Markov property exactly,
however, requires very dense state space sampling. Recent work suggests the
use of a bounded-parameter Markov decision process (bmdp) [23], a special class
of uncertain mdps which can be solved in polynomial-time with respect to the



number of states, as the abstraction model [13, 24]. A bmdp allows for coarse
discretization of the state space by relaxing the Markov constraint while still fully
representing the memoryless transition model. Moreover, a bmdp does not have
the strong assumptions on the transition model that general uncertain mdps do.

1.2 Contribution

This paper introduces a planning framework that quickly computes a control
policy for a system with uncertain actuation to satisfy a high-level specification
with maximum probability. The proposed planning framework utilizes a coarse
Markov abstraction to mitigate state space explosion when planning for the
continuous stochastic system. Unlike previous works in temporal logic planning,
however, the proposed framework makes few assumptions on the underlying
dynamics, and is applicable to a broad class of stochastic systems. The proposed
method builds upon previous work [13, 24] by constructing a coarse, bounded-
parameter mdp (bmdp) abstraction to model the evolution of the stochastic
system through discrete regions of the state space. Departing from the previous
works, an optimal policy is computed over the bmdp abstraction to satisfy a
high-level specification given in temporal logic. The framework constructs the
entire abstraction and control policy from scratch, requiring only a model of the
dynamics, a map of environment, and a task specification. Although errors are
introduced when discretely approximating a continuous process, analysis shows
that as the discrete regions become smaller, errors in the approximation limit to
zero and the control policy that is computed converges to the true optimal.

This work presumes that the task specification is given in co-safe ltl [1],
a subset of ltl. Although co-safe ltl has infinite semantics, a finite trace is
sufficient to satisfy these formulas. In many robotics applications, tasks are
required to be completed in finite time, making co-safe ltl an ideal language for
such high-level specifications. A noteworthy property of the bmdp abstraction is
that it can be reused for any co-safe ltl specification given the same robot and
workspace. Simulated results show that given a bmdp abstraction, a complete
control policy to satisfy the specification with maximum probability can be
computed in seconds, orders of magnitude faster than existing techniques.

2 Problem Formulation

The objective of this work is to compute a control policy for a fully-observable
robotic system with noisy actuation that satisfies a high-level task specification
given in a fragment of ltl with maximal probability. Formal definitions of the
robotic system, ltl specification language, and task satisfaction follow.

2.1 Stochastic Robotic System

Consider a robotic system with noisy actuation whose dynamics are described by
the following stochastic differential equation [25, 12, 13, 24]:

dx “ fpxptq, uptqqdt` F pxptq, uptqqdw, (1)

x P X Ă Rnx , u P U Ă Rnu ,



where X and U are compact sets representing the state and control spaces,
and wp¨q is an nw-dimensional Wiener process. Functions f : X ˆ U Ñ Rnx
and F : X ˆ U Ñ Rnxˆnw are bounded and Lipschitz continuous, where fp¨, ¨q
describes the robot’s nominal dynamics and F p¨, ¨q captures the influence of noise
on the dynamics. The pair pup¨q, wp¨qq is assumed to satisfy the Markov property.
The stochastic process is fully observable and stops once the interior of X is left.

2.2 Syntactically Co-safe LTL

The mission of the stochastic system is specified by a syntactically co-safe ltl
formula φ [1, 7]. The syntax and semantics of such a specification is given here
for completeness.

Syntax: A syntactically co-safe ltl formula φ is defined inductively over a set
Π “ tπ1, . . . , πnu of atomic Boolean propositions and a set of unary and binary
operators:

φ :“ π |  π |φ_ φ |φ^ φ |Xφ |Fφ |φ Uφ,
where π P Π in an atomic proposition,  ,_, and ^ represent the Boolean
operators negation, disjunction, and conjunction respectively, X is the temporal
next operator, F represents the temporal eventually operator, and U denotes the
temporal until operator.

Semantics: The semantics of a syntactically co-safe ltl formula φ are defined
over infinite traces of 2Π . Let σ “ tτiu
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i“0 denote an infinite trace, where τi P 2Π .

Furthermore, let σi “ τi, τi`1, . . . denote a suffix of the trace starting at step i.
The notation σ |ù φ denotes that the trace σ satisfies co-safe formula φ and has
the following recursive definition:

– σ |ù π
– σ |ù  π
– σ |ù φ1 _ φ2
– σ |ù φ1 ^ φ2
– σ |ù Xφ
– σ |ù Fφ
– σ |ù φ1Uφ2

if π P τ0
if π R τ0
if σ |ù φ1 or σ |ù φ2
if σ |ù φ1 and σ |ù φ2
if σ1 |ù φ
if Dk ě 0 where σk |ù φ
if Dk ě 0 where σk |ù φ2, and @i P r0, kq, σi |ù φ1

Although the semantics have an infinite horizon, a finite trace is sufficient to
satisfy φ. Thus, a deterministic finite automaton (dfa) Aφ “ pZ,Σ, δ, z0, T q can
be constructed that accepts exactly the satisfying traces of φ, where

– Z is a finite set of states,
– Σ “ 2Π is the input alphabet, where each input symbol is a truth assignment

for all propositions in Π,
– δ : Z ˆΣ Ñ Z is the transition function,
– z0 P Z is the initial state, and
– T Ď Z is the set of accepting states.

Let σ “ σ0 . . . σl be a string over Σ. Aφ accepts σ iff a sequence of states ω0 . . . ωl
exists in Z where ω0 “ z0, ωi`1 “ δpωi, σiq for i “ 0, . . . , l ´ 1, and ωl P T .



2.3 Stochastic Motion Planning with Temporal Goals

Stochastic system (1) evolves in a static workspace W consisting of a set of
polytopic obstacles O and a set of polytopic regions P “ tp1, . . . , pnu, where pi is
mapped to atomic proposition πi. Proposition πi becomes true when the system
visits any part of region pi. With a slight abuse of notation, let σ denote the
trajectory traced by the system during execution. Execution terminates when
σ |ù φ or σXO ‰ H, whichever occurs first. Given these definitions, the problem
addressed in this work is now formally stated:

Problem definition: Given a fully-observable stochastic system (1) operating in
a workspace W, compute a control policy for the system that maximizes the
probability of satisfying a syntactically co-safe ltl formula φ.

3 Methodology

A top-down framework for computing an optimal control policy is presented in
this section that maximizes the probability of satisfying a task specified in co-safe
ltl. Computation of the policy occurs in two phases. First, the evolution of the
stochastic system is abstracted to a particular kind of uncertain Markov model,
a bounded-parameter Markov decision process (bmdp) B. The bmdp models the
range of transition probabilities that are observed when the system transitions
between regions in a discretization of the state space. Second, the co-safe ltl
specification φ is translated into an equivalent dfa Aφ, and the Cartesian product
P “ B ˆ Aφ is computed. Conceptually, the product P is also a bmdp where
each state is a unique tuple pq, zq, where q is a discrete region of the state space
and z is a state in Aφ. Then, an optimal policy is computed over P to reach any
state pq1, z1q, where z1 is accepting in Aφ. With respect to the discretization, an
optimal policy over P satisfies φ with maximum probability. A block diagram
illustrating the components of the planning framework is shown in Figure 1.

State  
space 

Stochastic 
dynamics 

Co-safe LTL 
specification 

Control 
policy 

Interval Value 
Iteration DFA Product 

BMDP 

Discretization Local Policy 
Generation 

BMDP Construction 

BMDP 

Fig. 1: Diagram of the proposed stochastic temporal logic planning framework.

3.1 BMDP Abstraction

To achieve computational tractability, the proposed framework abstracts the
evolution of the stochastic system to motions between discrete regions of the state



space. Since the system is stochastic, navigation of the system between any pair
of adjacent regions is presumed to be imperfect. Furthermore, the probability of
transitioning to an adjacent region depends on the initial state within the current
region, which is not known a priori. Therefore, a range of transition probabilities
is required to fully represent the likelihood of the system successfully moving
between two regions, corresponding to the minimum and maximum over all initial
conditions. The discretization, coupled with the transition probability ranges
naturally lends itself to an uncertain Markov decision process. This particular
construction of the region level abstraction, however, forms a special kind of
uncertain mdp, known as a bounded-parameter mdp (bmdp) [23]. A bmdp is
able to capture the uncertainty over the transition probabilities with a range of
values, and can be solved optimally in polynomial time. In the remainder of this
section, a formal definition of the bmdp is given, and the construction of the
bmdp abstraction for stochastic planning is detailed.

Bounded-parameter MDP A bounded-parameter Markov decision process
(bmdp) [23] is an mdp whose transition probabilities are not known exactly.
Instead, these values are presumed to lie within a range of real numbers. Formally,
a bmdp is a tuple B “ pQ,A, qP , pP ,Lq, where

– Q is a finite set of states,

– A is a finite set of actions,

– qP : Q ˆ A ˆ Q Ñ r0, 1s and pP : Q ˆ A ˆ Q Ñ r0, 1s are pseudo-transition
probability functions that for state q P Q under action a P A return the
minimum and maximum transition probabilities to state q1 P Q, respectively,

– L : QÑ 2Π is a labeling function that maps each q P Q to a set of atomic
propositions in 2Π . L relates discrete states with the proposition regions.

The following property must also hold in a bmdp: for all q, q1 P Q and any
a P Apqq, qP pq, a, ¨q and pP pq, a, ¨q are pseudo-distribution functions such that

0 ď qP pq, a, q1q ď pP pq, a, q1q ď 1 and
ř

q1PQ
qP pq, a, q1q ď 1 ď

ř

q1PQ
pP pq, a, q1q.

Discretization A discretization of the state space that respects both obstacles
and proposition regions forms the states of the bmdp abstraction. Formally, a
discretization of the bounded state space X is defined as a set of polytopic,
non-overlapping subspaces of X whose union is X.

A desirable discretization depends on a number of factors, including the
geometry and dynamics of the system. Practically speaking, the coarseness of the
discretization has a direct impact on policy computation time. The difficulty of
discretizing a high-dimensional space for motion planning purposes is well known
[7]. The proposed framework advocates a discretization of the workspace using
a Delaunay triangulation [26] that can easily be generated to respect obstacles
and other regions of interest. Moreover, this triangulation avoids skinny triangles
which may be deleterious to the abstraction. Note that discretizing the workspace
induces a discretization of the state space by projecting each element of the state
space into the workspace and identifying the region the projection lies in.



Local Policy Computation Given a discretization of the state space, a local
controller or control policy is generated to optimally navigate the stochastic
system between adjacent regions. These local policies correspond to the actions of
the bmdp abstraction. The proposed framework is not dependent on a particular
method for local policy generation, so long as the transition probability range for
successfully moving between two regions can be calculated. A general method for
computing local policies is the imdp algorithm [12], a sampling-based approach
that asymptotically approximates the optimal control policy for stochastic system
(1) using a series of progressively larger Markov decision processes. When local
policies are approximated with a Markov chain (as in imdp), the minimum and
maximum transition probabilities for transitioning to an adjacent discrete region
are easily obtained with an absorbing Markov chain analysis [27]. The imdp
method is used to compute the local policies in the evaluation of this framework.
Depending on the system employed, however, more specialized controllers can
also be synthesized for stronger guarantees in the local control policies.

3.2 Product BMDP and Optimal Policy

Recall that the objective of the system is given as a co-safe ltl formula φ, and
that a finite trace is able to satisfy this kind of specification. To compute a
control policy to satisfy φ, the specification is first translated into an equivalent
dfa [1]. Unfortunately, constructing Aφ introduces an exponential blow-up with
respect to the size of φ. Nevertheless, tools exist that emit a minimized dfa
virtually instantly for the kinds of specifications commonly used for planning tasks
[28]. Given Aφ, the product of Aφ with the bmdp described above is computed,
and then a policy over the product is obtained to satisfy the specification with
maximum probability. The product bmdp is formally defined below.

Product BMDP Given a bmdp B and a dfa Aφ for a co-safe ltl specification

φ, the product bmdp P “ B ˆAφ is a tuple P “ pQP , TP , AP , qPP , pPPq, where

QP “ Qˆ Z, TP “ Qˆ T, AP “ A,

qPPppq, zq, aP , pq
1, z1qq “

"

qP pq, a, q1q if z1 “ δpz, Lpq1qq
0 otherwise,

pPPppq, zq, aP , pq
1, z1qq “

"

pP pq, a, q1q if z1 “ δpz, Lpq1qq
0 otherwise,

for q, q1 P Q, aP P AP , a P A, and z, z1 P Z. Conceptually, P is both a bmdp and
a dfa. The goal is to compute a policy over the actions AP in P to reach any
terminal state pq, zq P TP with maximum probability. Note that transitions in
the bmdp component of each state still obey the transition probabilities over
the actions between each discrete region, and a transition in the dfa occurs
only when the system enters a labeled proposition region that has a transition
in the current dfa state. Therefore, the policy that maximizes the probability
of reaching a state in TP optimizes the probability of satisfying φ (reaching an
accepting state in Aφ). A conceptual illustration of the of the product bmdp P
given B and Aφ is shown in Figure 2.
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(c) A conceptual illustration of the product bmdp P “ B ˆ Aφ

Fig. 2: (a) The minimal dfa Aφ for φ “ p p3 Upp1_ p2qq^Fp3. (b) A discretiza-
tion of the state space, allowing for the construction of a bmdp B with proposition
regions p1, p2, and p3. (c) An illustration of the product bmdp P “ B ˆ Aφ.
Specification φ requires the system to transition through P by visiting regions p1
or p2, followed by region p3. If proposition p3 is visited first, φ cannot be satisfied.
The accepting state is denoted with the double circle.

Optimal Policy Computation Finding a policy over P to satisfy specification
φ is equivalent to solving the maximal reachability probability problem [29]. The
objective in this problem is to find the maximum probability that a set of states
can be reached from any other state in an mdp. Prior work also solves the
maximal reachability probability problem for a bmdp [30]. The key difference for
a bmdp is that the expected value (maximum probability) for each state is not a
scalar value, but rather a range derived from the transition probability bounds.

Note that a bmdp represents a uncountably-large set of mdps whose transition
probabilities lie in those of the bmdp. This implies that the optimization objective
for a bmdp is ambiguous since the true probabilities are unknown. The literature
proposes two optimal policies: a pessimistic policy that optimizes for the lower
bound probabilities, and an optimistic policy that optimizes for the upper bound
probabilities [23]. From these two criteria, absolute optimal value ranges for each
state in the bmdp naturally correspond to the minimum pessimistic value and
the maximum optimistic value.

The algorithm for computing an optimal policy in a bmdp is interval value
iteration (ivi), the analog of value iteration for an mdp. Before ivi begins,
an optimization objective for the bmdp must be chosen (e.g., pessimistic or
optimistic). For each iteration of ivi, an mdp representative is selected, based
on the optimization objective and the current value estimate, and the typical
Bellman backup is computed. Let rP denote the probability distribution for the
mdp representative selected during an iteration of ivi for the product bmdp



P. Then the Bellman backup operation for computing the maximum reachable
probabilities in P is:

vpqq “

#

1 if q P TP

maxaPApqq

”

ř

q1PQ
rP pq, a, q1qvpq1q

ı

otherwise.
(2)

The result of the interval value iteration computation (2) is a control policy
that maximizes the probability of satisfying the co-safe ltl specification φ
over the bmdp abstraction. The value vpqq represents the probability that the
stochastic system, starting anywhere in region q, reaches an accepting state in the
automaton Aφ. Since ivi reasons over discrete regions of the state space rather
than individual elements, significant savings in computation time are realized.

4 Analysis

This section analyzes the asymptotic convergence of the probability of satisfying
a co-safe ltl specification φ computed over the bmdp abstraction to the true
optimal values for stochastic system (1). It is shown that the bmdp approximates
the continuous dynamics with a bounded error that is a function of the diameter
of each polytopic region. As the largest diameter in the discretization shrinks
to zero, uncertainty in the optimal value estimates for the bmdp are eliminated,
indicating convergence to the true maximum probabilities for the system to satisfy
φ. Proof of these claims begins by inspecting the local policies of the bmdp. A
typical method for computing such policies uses a discrete, locally consistent
approximation of the continuous dynamics, defined below.

Definition 4.1 (Definition 1.3 in [25]). Let ξ denote a controlled Markov
chain approximating a stochastic system (1) whose dynamics are given by bounded,
Lipschitz continuous functions f and F . Each state x P ξ is associated with a
non-negative holding time ∆tpxq, representing the time a control u is applied at
state x. Let ξi denote the ith state resulting from the stochastic process ξ, and the
notation ∆ξi “ ξi`1 ´ ξi denote the distance between two consecutive states in
the discrete approximation. A discrete time Markov chain ξ is locally consistent
with continuous-time system (1) if the following conditions are met for all x P ξ,
where w P U is the control applied at state x:

Er∆ξi|ξi “ x, ui “ ws “ fpx,wq∆tpxq `Op∆tpxqq (3)

Covr∆ξi|ξi “ x, ui “ ws “ F px,wqF px,wqT∆tpxq `Op∆tpxqq (4)

where Op¨q indicates an upper bound on the error introduced by the discrete time
approximation of the continuous dynamics as a function of the holding time.

In the bmdp abstraction, actions for each discrete region (local policies) are
presumed to be locally consistent Markov chains of stochastic system (1). Note,
the imdp method [12] computes a locally consistent Markov chain. A transition
between regions in the bmdp, however, likely requires a series of discrete time
steps to complete. Since each action is locally consistent, the modeling error in
each bmdp transition is bounded, as shown in the following lemma.



Lemma 4.2. Given a bmdp abstraction of stochastic system (1) where actions
induce locally consistent Markov chains, the error incurred by a transition from
region q to adjacent region q1 is bounded by the maximum expected time to exit q.

Proof. Let ξµ denote the locally consistent Markov chain induced by action µ
in the bmdp abstraction defined over q that attempts to navigate the system
from q to an adjacent region q1. Furthermore, let ∆Txpξ

µq be the expected time
for the system to exit region q from initial state x P ξµ. From (3),(4), the error
introduced by ξµ is bounded by the discrete holding times at each state in ξµ. It
then follows directly that the error in the transition from region q is bounded by
maxxPξµ Op∆Txpξ

µqq, which is the maximum error that accumulates when the
system evolves within q under µ over all possible initial states. [\

Furthermore, the expected exit time for system (1) from a bounded region
is always finite, and this time is a function of the initial state and the diameter
of the region ([31], Chapter III, Lemma 3.1). Given the error incurred by the
bmdp abstraction of system (1) as a function of the diameter of each region, what
remains to prove is that as the maximum diameter shrinks to zero, an optimal
bmdp policy asymptotically converges to an optimal policy for the continuous
system. Arguments are based on the value functions corresponding to the optimal
policies, and begin by inspecting the transition probability ranges in the bmdp.
For convenience, diampqq denotes the diameter of a polytopic region q in the
discretization.

Lemma 4.3. Let µ denote a locally optimal, locally consistent control policy
that navigates the system (1) from region q to a region adjacent to q in a bmdp
abstraction. Then, for all q1 adjacent to q:

lim
diampqqÑ0

”

P̂ pq, µ, q1q ´ P̌ pq, µ, q1q
ı

“ 0. (5)

Proof (sketch). The Lipschitz assumption for stochastic system (1) asserts
||fpx, uq ´ fpx1, u1q|| ď Kp||x ´ x1|| ` ||u ´ u1||q, where K P R is the Lipschitz
constant. An analogous assertion also holds for the covariance F . Since the system
evolves according to a locally optimal policy µ to maximize the probability of
reaching an adjacent, contiguous region, it follows from the Lipschitz condition
of f, F that the optimal transition probabilities for two states x, x1 in a discrete
region q differ only by a function of the distance between x and x1. As the
diameter of q shrinks to zero, the maximum distance between any two states in
q also decreases to zero, indicating that the transition probability ranges under
µ to reach all neighboring regions also converge to scalar values. [\

For any policy over a bmdp, the range of optimal value function estimates
falls within the minimum pessimistic value and the maximum optimistic value.
The following lemma shows that these policies and value function estimates
always exist. The subsequent theorem then relates the value function estimate to
the continuous dynamics (1), showing that the values converge to the maximum
probability of satisfying a co-safe ltl specification for each state in the product
bmdp abstraction as largest diagonal in the discretization approaches zero.



Lemma 4.4. (Theorems 8 and 9 in [23]) For any bmdp there exists an opti-
mistically optimal and a pessimistically optimal policy. These policies converge
pointwise to the desired optimal value function.

Theorem 4.5. Let v̌pqpq denote the minimum pessimistically optimal value and
v̂pqpq denote the maximum optimistically optimal value for a state qp computed
by (2) over the product bmdp abstraction P for the stochastic system (1) and
co-safe specification φ. Then, for all qp P QP :

lim
maxqPQ diampqqÑ0

rv̂pqpq ´ v̌pqpqs “ 0, (6)

and v̂pqpq “ v̌pqpq is the maximum probability of satisfying φ for all states x P qp
of stochastic system (1).

Proof (sketch). It follows directly from Lemmas 4.3 and 4.4 that the value
function range for each region in the bmdp abstraction must converge to a single
value as the diameter of the largest discrete region shrinks to zero. Thus, (6)
holds. Furthermore, from Lemma 4.2, the bmdp models the underlying dynamics
of the continuous stochastic system arbitrarily well as the largest diameter in the
discretization shrinks to zero. Therefore, as |v̂pqpq ´ v̌pqpq| approaches 0 for all
states in the product bmdp, the value range for qp converges to a scalar value
that is the continuously optimal value for all states x P qp. [\

5 Evaluation

Evaluation of the proposed method for computing a control policy that satisfies
specification φ with maximum probability is given in this section. A 2D sys-
tem with single integrator dynamics and Gaussian noise is simulated. Formally,
fpx, uq “ u and F px, uq “ 0.1I, where I is the identity matrix, as in [12, 13, 24].
Computations are performed on a 2.4GHz Intel Xeon cpu with 12GB memory.

Simulated experiments are performed in a 20 ˆ 20 warehouse inspired en-
vironment, shown in Fig. 3a. A set of proposition regions, p1, . . . , p8, represent
regions of interest in the warehouse, and region p9 represents a processing station
where completed orders are taken. Two different co-safe ltl specifications are
evaluated. The first specification, φG, represents a gathering task, where the
system must retrieve three items in any order, then bring the completed order
to the processing station. Since the same item could exist in multiple locations,
subformulas φ1 “ pp1 _ p3q, φ2 “ pp2 _ p4q and φ3 “ pp5 _ p6 _ p7 _ p8q denote
the possible locations for items 1, 2, and 3, respectively. The second task, φS , is
a rigid sequence of items to gather, where item 1 must be retrieved before item
2, and item 2 must be retrieved before item 3, and only then may the system
return to the processing station. φG and φS are represented in co-safe ltl as:

φG “ p p9 Uφ1q ^ p p9 Uφ2q ^ p p9 Uφ3q ^ Fp9
φS “ Fpφ1 ^ XFpφ2 ^ XFpφ3 ^ XFp9qqq.

The minimized automata for φG and φS are shown in Figures 3b and 3c.
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Fig. 3: (a) The 20ˆ20 warehouse. Obstacles are gray, and nine proposition regions
are shaded and labeled. An obstacle and proposition respecting triangulation
(826 triangles) is overlayed. The system starts at the star. (b) Minimized dfa for
φG. (c) Minimized dfa for φS . Self-transitions in the dfas are omitted for clarity.

The computation time and quality of the resulting control policy from the
proposed bmdp abstraction are evaluated here. To compare this work against
existing methods for planning under uncertainty, two state-of-the-art frameworks
are extended to compute policies that satisfy a co-safe ltl specification. The first
method employs a typical mdp abstraction, constructed using the smr method
[11]. Eight unit controls spanning the cardinal and ordinal directions are applied
in the smr for a fixed duration of 100ms. Given the smr, a policy is computed
over the product of the smr with Aφ in the style of existing temporal logic
methods. The second approach utilizes the imdp algorithm [12] and iteratively
constructs an optimal policy directly in the continuous state space X ˆAφ. In
the bmdp abstraction, a discretization with 826 triangles is used, local policies
are computed using imdp, and a pessimistically optimal policy over the bmdp is
computed. All three methods are executed until there are 750 states sampled per
unit area or four hours elapses, whichever is first. Previous work has shown this
sampling density yields favorable policies for the system evaluated [13].

Discrete abstraction The first step for the bmdp and smr methods is to construct
a discrete abstraction that models the evolution of the stochastic system in
the environment. This construction can be thought of as a one-time cost since
the abstraction can be reused for different tasks, provided the environment and
robot stay the same. The imdp algorithm does not emit a reusable abstraction
since an optimal policy is constructed directly by this method. Table 1 shows
that constructing the bmdp abstraction (over the discretization in Fig. 3a) is



Abstraction Policy time (s) Prob. Success
time (s) φG φS φG φS

bmdp 1181.59 10.80 5.87 0.979 0.973
smr 2494.68 1728.56 1234.97 1.000 1.000

imdp n/a 14400.00 14400.00 0.899 0.971

Table 1: The average time to generate the discrete abstractions, average policy
computation time, and median probability of success for tasks φG and φS in the
three methods evaluated. All values are taken over 50 independent runs. The
abstraction for each method is a one time cost, and can be reused for any φ.

significantly faster than a comparable mdp abstraction. bmdp construction for
826 discrete regions takes less than 20 minutes on a single processor, compared
to over 45 minutes for smr.

Policy computation Computing a policy to satisfy the specification with maximum
probability exposes stark differences in the three different methods, as noted in
Table 1. In the bmdp and smr methods, the Cartesian product of the Markov
abstraction is taken with the automaton Aφ, and an optimal policy over this
product is computed. For imdp, the policy is computed directly in the product
space. The bmdp abstraction requires just over 10 seconds to find an optimal
(pessimistic) policy for φG and under 6 seconds to find an optimal policy for φS .
Compare these times to smr, which requires nearly 30 minutes for φG and over
20 minutes for φS . This difference accentuates the gains in reasoning over discrete
regions rather than individual state space elements. The imdp method consistently
reached a four hour timeout, and only contains about half of the number of
discrete states that exist the final bmdp and smr policies; the complexity of imdp
depends on the number of states in the existing approximating structure, where
each iteration takes more time than the previous.

Probability of Success Naturally, the significant gains in computation time for the
bmdp abstraction do not come without a price. The last two columns in Table
1 show the median probability of success to satisfy each of the specifications
across all three methods. Although the smr abstraction does not provide any
formal guarantees, this method is able to consistently find a virtually perfect
policy. This result can be attributed to the relatively simple system evaluated
coupled with the rather dense mdp abstraction utilized. Nevertheless, the much
coarser bmdp abstraction cedes only 2-3% probability of success compared to smr
while providing computation times that are substantially faster. Although imdp
provides strong theoretical guarantees, the complexity of this method prohibits
scalability into the large product state space. This is particularly evident for φG,
where Aφ has 9 states, and imdp has a probability of success at just around 90%.

6 Discussion

This work presents a method for efficient stochastic motion planning where
the objective is a high-level specification given in co-safe ltl. By abstracting
the evolution of the robot to a bounded-parameter mdp where the states are



discrete regions of the state space, the method is able to quickly and effectively
compute an optimal policy over the product of the bmdp abstraction and a dfa
representing the high-level specification with maximum probability. Evaluation of
the approach shows that policies for co-safe ltl specifications can be obtained in
seconds once an abstraction is constructed. The bmdp abstraction admits optimal
policy computation that is orders of magnitude faster than existing methods.

The analysis of the method indicates that as the discretization becomes
finer, errors introduced in the bmdp abstraction model limit to zero and the
policy asymptotically converges to optimal. As presented, the framework does
not actively seek to reduce the transition probability ranges or discrete region
sizes to achieve asymptotic optimality directly. It is a natural extension of this
work, however, to refine local policies with large probability ranges by shrinking
the discrete region they are defined over.

The relatively simple dynamics considered in the evaluation of this work
should not be considered a limiting factor. The dynamics are reasoned over only
at the bmdp abstraction level. For a more complex system, the time to compute
the bmdp abstraction will surely increase, but time to computing the satisfying
policy is polynomial in the number of discrete regions.
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