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Accurate Modelling of a real world system with probabilistic behaviour is a difficult task. Sensor noise and statistical estimations,

among other imprecisions, make the exact probability values impossible to obtain. In this paper, we consider the Interval Markov

decision processes (IMDPs), which generalise classical MDPs by having interval-valued transition probabilities. They provide a

powerful modelling tool for probabilistic systems with an additional variation or uncertainty that prevents the knowledge of the

exact transition probabilities. We investigate the problem of robust multi-objective synthesis for IMDPs and Pareto curve analysis of

multi-objective queries on IMDPs. We study how to find a robust (randomised) strategy that satisfies multiple objectives involving

rewards, reachability, and more general ω-regular properties against all possible resolutions of the transition probability uncertainties,

as well as to generate an approximate Pareto curve providing an explicit view of the trade-offs between multiple objectives. We show

that the multi-objective synthesis problem is PSPACE-hard and provide a value iteration-based decision algorithm to approximate the

Pareto set of achievable points. We finally demonstrate the practical effectiveness of our proposed approaches by applying them on

several case studies using a prototype tool.

CCS Concepts: • Computing methodologies → Planning under uncertainty; Motion planning; • Theory of computation
→ Approximation algorithms analysis;

Additional Key Words and Phrases: Interval Markov Decision Processes, Multi-objective Optimisation, Robust Synthesis, Pareto

Curves, Complexity
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1 INTRODUCTION

IntervalMarkov Decision Processes (IMDPs) [Givan et al. 2000] extend classicalMarkovDecision Processes (MDPs) [Bellman

1957] by including uncertainty over the transition probabilities. More precisely, instead of a single value for the

probability of taking a transition, IMDPs allow ranges of possible probability values given as closed intervals of the reals.

Thereby, IMDPs provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty

concerning the knowledge of exact transition probabilities. They are especially useful to represent realistic stochastic

systems that, for instance, evolve in unknown environments with bounded behaviour or do not preserve the Markov

property.

Since their introduction (under the name of bounded-parameterMDPs) [Givan et al. 2000], IMDPs have been receiving

a lot of attention in the formal verification community [Cubuktepe et al. 2017; Petrucci and van de Pol 2018; Quatmann

et al. 2016]. They are viewed as the appropriate abstraction model for uncertain systems with large state spaces, including

continuous dynamical systems, for the purpose of analysis, verification, and control synthesis. Several model checking

and control synthesis techniques have been developed [Puggelli 2014; Puggelli et al. 2013; Wolff et al. 2012] causing a

boost in the applications of IMDPs, ranging from verification of continuous stochastic systems (e.g., [Lahijanian et al.

2015]) to robust strategy synthesis for robotic systems (e.g., [Luna et al. 2014a,b,c; Wolff et al. 2012]).

In recent years, there has been an increasing interest in multi-objective strategy synthesis for probabilistic sys-

tems [Chatterjee et al. 2006; Esteve et al. 2012; Forejt et al. 2011, 2012; Kwiatkowska et al. 2013; Mouaddib 2004; Ogryczak

et al. 2013; Perny et al. 2013; Randour et al. 2015]. Here, the goal is first to provide a complete trade-off analysis of

several, possibly conflicting, quantitative properties and then to synthesise a strategy that guarantees the user’s desired

behaviour. Such properties, for instance, ask to “find a robot strategy that maximises p
safe

, the probability of successfully

completing a track by safely manoeuvring between obstacles, while minimising t
travel

, the total expected travel time”.

This example has competing objectives: maximising p
safe

, which requires the robot to be conservative, and minimising

t
travel

, which causes the robot to be reckless. In such contexts, the interest is in the Pareto curve of the possible solution

points: the set of all pairs of (p
safe
, t
travel

) for which an increase in the value of p
safe

must induce an increase in the

value of t
travel

, and vice versa. Given a point on the curve, the computation of the corresponding strategy is asked.

Existing multi-objective synthesis frameworks [Chatterjee et al. 2006; Esteve et al. 2012; Forejt et al. 2011, 2012;

Kwiatkowska et al. 2013; Mouaddib 2004; Ogryczak et al. 2013; Perny et al. 2013; Randour et al. 2015] are limited toMDP

models of probabilistic systems. The algorithms use iterative methods (similar to value iteration) for the computation

of the Pareto curve and rely on reductions to linear programming for strategy synthesis. As discussed above, MDPs,

however, are constrained to single-valued transition probabilities, posing severe limitations for many real-world systems.

In this paper, we present novel techniques for robust control of IMDPs with multiple objectives. Our aim is to approx-

imate Pareto curve for a set of conflicting objectives, despite the additional uncertainty over the transition probabilities

in these models. Our approach views the uncertainty as making adversarial choices among the available transition

probability distributions induced by the intervals, as the system evolves. This is contract to works like [Scheftelowitsch

et al. 2017] where a probability distribution about the intervals is assumed and similar approaches [Petrucci and van de

Pol 2018]. We refer to this as the controller synthesis semantics. We compute a successive and increasingly precise
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approximation of the Pareto curve through a value iteration algorithm which optimises the weighted sum of objectives.

We consider three different multi-objective queries for IMDPs, namely synthesis, quantitative, and Pareto queries. We

start with the synthesis queries where our goal is to synthesise a robust strategy that guarantees the satisfaction of a

multi-objective property. We first analyse the problem complexity and prove that it is PSPACE-hard and then develop

a value iteration-based algorithm to approximate the Pareto curve of the given set of objectives. Afterwards, we extend

our solution approach to approximate the Pareto curve for other types of queries. In order to show the effectiveness of

our approach, we present promising results on several case studies analysed by a prototype implementation of the

algorithms.

Our queries are formulated in a way similar to [Forejt et al. 2012] but with three key extensions. First of all, we discuss

approximating Pareto curves for IMDP models which include interval model of uncertainty and provide more expressive

modelling formalisms for the abstraction of real world systems. As we discuss later, our solution approach can also

handle MDP models with more general convex models of uncertainty. Next, we provide a detailed discussion on the

reduction of a multi-objective property including reachability or reward predicates to a basic form, i.e., a multi-objective

property including only reward predicates. Our reduction to the basic form extends its counterpart in [Forejt et al. 2011,

2012] for MDPs. It also corrects a few minor flaws of these works, in particular in [Forejt et al. 2012, Proposition 2]; see

the discussion after Proposition 18.

Finally, we detail the generation of randomised strategies.

This article is an extended version of [Hahn et al. 2017]; compared with [Hahn et al. 2017], in this paper we provide

additional technical details such as formal proofs, the extension to general PLTL andω-regular properties, the generation

of randomised strategies, and additional empirical results.

Related work. Related work can be grouped into two main categories: uncertain Markov model formalisms and model

checking/synthesis algorithms.

Firstly, from the modelling viewpoint, various probabilistic modelling formalisms with uncertain transitions have

been studied in the literature. Interval Markov Chains (IMCs) [Jonsson and Larsen 1991; Kozine and Utkin 2002]

or abstract Markov chains [Fecher et al. 2006] extend standard discrete-time Markov Chains (MCs) with interval

uncertainties. They do not feature the nondeterministic choices of transitions. Uncertain MDPs [Puggelli et al. 2013]

allow more general sets of distributions to be associated with each transition, not only those described by intervals.

They usually are restricted to rectangular uncertainty sets requiring that the uncertainty is linear and independent for

any two transitions of any two states. Parametric MDPs [Daws 2004; Hahn et al. 2011], to the contrary, allow such

dependencies as every probability is described as a rational function on a finite set of global parameters. IMDPs extend

IMCs by inclusion of nondeterminism and are a subset of uncertain MDPs and parametric MDPs.

Secondly, from the side of algorithmic developments, several verification methods for uncertain Markov models

have been proposed. The problem of computing reachability probabilities and expected total reward for IMCs and

IMDPs was first investigated in [Chen et al. 2013b; Wu and Koutsoukos 2008]. Then, several of PCTL and LTL model

checking algorithms discussed in these works were introduced in [Benedikt et al. 2013; Chatterjee et al. 2008; Chen et al.

2013b] and [Lahijanian et al. 2015; Puggelli et al. 2013; Wolff et al. 2012], respectively. Concerning strategy synthesis

algorithms, the works in [Hahn et al. 2011; Nilim and El Ghaoui 2005] considered synthesis for parametric MDPs and

MDPs with ellipsoidal uncertainty in the verification community. In control community, such synthesis problems were

mostly studied for uncertain Markov models in [Givan et al. 2000; Nilim and El Ghaoui 2005; Wu and Koutsoukos 2008]
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with the aim to maximise expected finite-horizon (un)discounted rewards. All these works, however, consider solely

single objective properties, and their extension to multi-objective synthesis is not trivial.

Multi-objective model checking of probabilistic models with respect to various quantitative objectives has been

recently investigated. The works of [Etessami et al. 2007; Forejt et al. 2011, 2012; Kwiatkowska et al. 2013] focused

on multi-objective verification of ordinary MDPs. In [Chen et al. 2013a], these algorithms were extended to the more

general models of 2-player stochastic games. These models, however, cannot capture the continuous uncertainty in the

transition probabilities as IMDPs do. For the purposes of synthesis though, it is possible to transform an IMDP into a

2-player stochastic game; nevertheless, such a transformation raises an extra exponential factor to the complexity of

the decision problem. This exponential blowup has been avoided in our setting.

Structure of the paper. We start with necessary preliminaries in Section 2. In Section 3, we discuss multi-objective

robust control of IMDPs and present our novel solution approaches. In Section 4, we detail how randomised strategies

can be generated. In Section 5, we demonstrate our approach on three case studies and present experimental results.

Finally, in Section 6 we conclude the paper.

To keep the presentation clear, non-trivial proofs have been moved to the Appendix A.

2 PRELIMINARIES

For a set X , denote by Disc(X ) the sets of discrete probability distributions over X . A discrete probability distribution ρ

is a function ρ : X → R≥0 such that

∑
x ∈X ρ (x ) = 1; for X ′ ⊆ X , we write ρ (X ′) for

∑
x ∈X ′ ρ (x ). Given ρ ∈ Disc(X ),

we denote by Supp(ρ) the set { x ∈ X | ρ (x ) > 0 }, and by δx , where x ∈ X , the point distribution such that δx (y) = 1

for y = x , 0 otherwise. For a distribution ρ, we also write ρ = { (x ,px ) | x ∈ X } where px = ρ (x ) is the probability of x .

For a vector x ∈ Rn we denote by xi , its i-th component, and we call x a weight vector if xi ≥ 0 for all i and∑n
i=1

xi = 1. The Euclidean inner product x · y of two vectors x, y ∈ Rn is defined as

∑n
i=1

xi ·yi . In the following, when

comparing vectors, the comparison is to be understood component-wise. Thus, e.g. x ≤ y means that for all indices

i we have xi ≤ yi . For a set of vectors S = {s1, . . . , st } ⊆ Rn , we say that s ∈ Rn is a convex combination of elements

of S , if s =
∑t
i=1

wi · si for some weight vector w ∈ Rt
≥0
. Furthermore, we denote by S↓ the downward closure of the

convex hull of S which is defined as S↓ = { y ∈ Rn | y ≤ z for some convex combination z of the elements of S }. For a

given convex set X , we say that a point x ∈ X is on the boundary of X , denoted by x ∈ ∂X , if for every ε > 0 there is a

point y < X such that the Euclidean distance between x and y is at most ε . Given a downward closed set X ∈ Rn , for

any z ∈ Rn such that z ∈ ∂X or z < X , there is a weight vector w ∈ Rn such that w · z ≥ w · x for all x ∈ X [Boyd and

Vandenberghe 2004]. We say that w separates z from X↓. Given a set Y ⊆ Rk , we call a vector y ∈ Y Pareto optimal in

Y if there does not exist a vector z ∈ Y such that y ≤ z and y , z. We define the Pareto set or Pareto curve of Y to be the

set of all Pareto optimal vectors in Y , i.e., Pareto set Y = { y ∈ Y | y is Pareto optimal }.

2.1 Interval Markov Decision Processes

We now define Interval Markov Decision Processes (IMDPs) as an extension of MDPs, which allows for the inclusion of

transition probability uncertainties as intervals. IMDPs belong to the family of uncertain MDPs and allow to describe a

set of MDPs with identical (graph) structures that differ in distributions associated with transitions. Formally,

Definition 1 (IMDPs). An Interval Markov Decision Process (IMDP)M is a tuple (S, s̄,A, I ,AP, L), where S is a finite

set of states, s̄ ∈ S is the initial state, A is a finite set of actions, I : S × A × S → I ∪ {[0, 0]} is a total interval transition
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probability function where I = { [a,b] | 0 < a ≤ b ≤ 1 }, AP if a finite set of atomic propositions, and L : S → 2
AP

is a

total labelling function.

The requirement that 0 < a ensures that the graph structure remains the same for different resolutions of the intervals.

Having a = 0 would mean that an edge in the graph could disappear. As discussed later on, this restriction is essential

for some of the algorithms we use to analyse IMDPs. Given s ∈ S and a ∈ A, we call has ∈ Disc(S ) a feasible distribution

reachable from s by a, denoted by s
a
−→ has , if, for each state s ′ ∈ S , we have has (s

′) ∈ I (s,a, s ′). This means that we can

only assign probability values lying in the interval I (s,a, s ′) to state s ′. We denote the set of feasible distributions for

state s and action a byH a
s , i.e.,H

a
s = { h

a
s ∈ Disc(S ) | s

a
−→ has } and we denote the set of available actions at state s ∈ S

by A (s ), i.e., A (s ) = { a ∈ A | H a
s , ∅ }. We assume that A (s ) , ∅ for all s ∈ S . We define the size ofM, written |M|,

as the number of non-zero entries of I , i.e., |M| = ��{ (s,a, s ′, ι) ∈ S × A × S × I | I (s,a, s ′) = ι }�� ∈ O ( |S |2 · |A|).
A path ξ inM is a finite or infinite sequence of alternating states and actions ξ = s0a0s1 . . . , ending with a state if

finite, such that for each i ≥ 0, I (si ,ai , si+1) ∈ I. The i-th state (action) along the path ξ is denoted by ξ [i] (ξ (i )) and, if

the path is finite, we denote by last (ξ ) its last state; moreover, we denote by ξ [i . . . ] the suffix of ξ starting from ξ [i].

For instance, for the finite path ξ = s0a0s1 . . . sn , we have ξ [i] = si , ξ (i ) = ai , and last (ξ ) = sn . The sets of all finite and

infinite paths inM are denoted by FPaths and IPaths, respectively.

An ω-word w is an infinite sequence of sets of atomic propositions, i.e.,w ∈ (2AP )ω . Given an infinite path ξ , the

wordw (ξ ) generated by ξ is the sequencew (ξ ) = w0w1 . . . such that for each i ≥ 0,wi = L(ξ [i]).

The nondeterministic choices between available actions and feasible distributions present in an IMDP are resolved

by strategies and natures, respectively.

Definition 2 (Strategy and Nature in IMDPs). Given an IMDP M, a strategy is a function σ : FPaths → Disc(A) such

that for each ξ ∈ FPaths, σ (ξ ) ∈ Disc(A (last (ξ )). A nature is a function π : FPaths × A → Disc(S ) such that for each

ξ ∈ FPaths and a ∈ A (s ), π (ξ ,a) ∈ H a
s where s = last (ξ ). The sets of all strategies and all natures are denoted by Σ

and Π, respectively.

Given a finite path ξ of an IMDP , a strategy σ , and a nature π , the system evolution proceeds as follows: let s = last (ξ ).

First, an action a ∈ A (s ) is chosen probabilistically by σ . Then, π resolves the uncertainties and chooses one feasible

distribution has ∈ H
a
s . Finally, the next state s

′
is chosen according to the distribution has , and the path ξ is extended by

a and s ′, i.e., the resulting path is ξ ′ = ξas ′.

A strategy σ and a nature π induce a probability measure over paths as follows. The basic measurable events are the

cylinder sets of finite paths, where the cylinder set of a finite path ξ is the set Cylξ = { ξ
′ ∈ IPaths | ξ is a prefix of ξ ′ }.

The probability Pr
σ ,π
M

of a cylinder set Cylξ is defined inductively as follows:

Pr
σ ,π
M

(Cylξ ) =




1 if ξ = s̄ ,

0 if ξ = t , s̄ ,

Pr
σ ,π
M

(Cylξ ′ ) · σ (ξ
′) (a) · π (ξ ′,a) (s ) if ξ = ξ ′as .

Standard measure theoretical arguments ensure that Pr
σ ,π
M

extends uniquely to the σ -field generated by cylinder sets.

In order to model additional quantitative measures of an IMDP , we associate rewards to the enabled actions. This is

done by means of reward structures.
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Definition 3 (Reward Structure). A reward structure for an IMDP is a function r : S × A → R that assigns to each

state-action pair (s,a), where s ∈ S and a ∈ A (s ), a reward r(s,a) ∈ R. Given a path ξ and k ∈ N ∪ {∞}, the total

accumulated reward in k steps for ξ over r is r[k](ξ ) =
∑k−1

i=0
r(ξ [i], ξ (i )).

Note that we allow negative rewards in this definition; however, due to later assumptions, their use is restricted. In

particular, negative rewards are only allowed as result of the encoding of probability values as specified in Proposition 18.

s

t u

a, 3 b, 1

[
1

3
,

2

3
]

[ 1
1
0 ,

1
][

2

5

,
3

5

]

[

1

4 ,
2

3

]

a, 0

[1, 1]

b, 0

[1, 1]

Fig. 1. An example of IMDP .

Example 4. As an example of IMDP with a reward structure, consider the IMDP

depicted in Fig. 1. The set of states is S = {s, t ,u} with s being the initial one.

The set of actions is A = {a,b}, and the non-zero transition probability intervals

are I (s,a, t ) = [
1

3
, 2

3
], I (s,a,u) = [

1

10
, 1], I (s,b, t ) = [

2

5
, 3

5
], I (s,b,u) = [

1

4
, 2

3
],

and I (t ,a, t ) = I (u,b,u) = [1, 1]. The underlined numbers indicate the reward

structure r with r(s,a) = 3, r(s,b) = 1, and r(t ,a) = r(u,b) = 0. Among the

uncountable many distributions belonging toH a
s , two possible choices for nature

π on s and a are π (s,a) = {(t , 3

5
), (u, 2

5
)} and π (s,a) = {(t , 1

3
), (u, 2

3
)}. ♢

2.2 Probabilistic Linear Time Logic (PLTL)

Probabilistic Linear Time Logic (PLTL) [Bianco and de Alfaro 1995] is the probabilistic counterpart of LTL for Kripke

structures which can be used to express properties of an IMDP with respect to its infinite behaviour, such as liveness

properties. Let AP be a given set of atomic propositions. The syntax of a PLTL formula Φ is given by:

Φ ::= Pr∼p [Ψ] | Prmin=?[Ψ] | Prmax=?[Ψ]

Ψ ::= a | ¬Ψ | Ψ ∧ Ψ | XΨ | Ψ U Ψ

where a ∈ AP , ∼ ∈ {≤, ≥}, and p ∈ [0, 1] ∩ Q. Standard Boolean operators such as false, true, disjunction, implication,

equivalence can be derived as usual, e.g., ff = a ∧ ¬a, tt = ¬ff , and Ψ1 ∨ Ψ2 = ¬(¬Ψ1 ∧ ¬Ψ2); similarly, the finally F
and globally G temporal operators can be defined as FΨ = tt U Ψ and GΨ = ¬F¬Ψ.

Note that a PLTL formula Φ is just a probability operator on top of an LTL formula Ψ; this is clear by the semantics

of Φ and Ψ: given an IMDP M and a PLTL formula Pr∼p [Ψ], we say thatM satisfies Pr∼p [Ψ], writtenM |= Pr∼p [Ψ],

if Pr
σ ,π
M

({ ξ ∈ IPaths | ξ |= Ψ }) ∼ p for all σ ∈ Σ and π ∈ Π, where ξ |= Ψ is defined inductively as follows:

ξ |= a if a ∈ L(ξ [0]),

ξ |= ¬Ψ if it is not the case that ξ |= Ψ (also written ξ ̸ |= Ψ),

ξ |= Ψ1 ∧ Ψ2 if ξ |= Ψ1 and ξ |= Ψ2,

ξ |= XΨ if ξ [1 . . . ] |= Ψ, and

ξ |= Ψ1 U Ψ2 if there exists n ∈ N such that ξ [n . . . ] |= Ψ2 and for each 0 ≤ i < n, it holds ξ [i . . . ] |= Ψ1.

The value of the PLTL formula Propt=?[Ψ], with opt ∈ {min,max}, is defined as

Propt=?[Ψ] = opt

σ ∈Σ,π ∈Π
Pr
σ ,π
M

({ ξ ∈ IPaths | ξ |= Ψ }).

3 MULTI-OBJECTIVE ROBUST CONTROL OF IMDPs

In this section, we start by considering two main classes of properties for IMDPs; the probability of reaching a target

and the expected total reward. The reason that we focus on these properties is that their algorithms usually serve as the
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basis for more complex properties, such as quantitative properties and PLTL/ω-regular properties, as we will present

later in the section. To this aim, we lift the satisfaction definition of these two classes of properties from MDPs [Forejt

et al. 2011, 2012] to IMDPs by encoding the notion of robustness for strategies.

Definition 5 (Reachability Predicate & its Robust Satisfaction). A reachability predicate [T ]
≤k
∼p consists of a set of target

statesT ⊆ S , a relational operator ∼ ∈ {≤, ≥}, a rational probability bound p ∈ [0, 1]∩Q and a time bound k ∈ N∪ {∞}.

It indicates that the probability of reaching T within k time steps satisfies ∼ p.

Robust satisfaction of [T ]
≤k
∼p by IMDP M under strategy σ ∈ Σ is denoted byM⇂σ |=Π [T ]

≤k
∼p and indicates that the

probability of the set of all paths that reachT under σ satisfies the bound ∼ p for every choice of nature π ∈ Π. Formally,

M⇂σ |=Π [T ]
≤k
∼p iff Pr

σ
M

(3≤k T ) ∼ p where Pr
σ
M

(3≤k T ) = optπ ∈Π Pr
σ ,π
M

({ ξ ∈ IPaths | ∃i ≤ k : ξ [i] ∈ T }) and

opt = min if ∼ = ≥ and opt = max if ∼ = ≤. Furthermore, σ is referred to as a robust strategy.

Definition 6 (Reward Predicate & its Robust Satisfaction). A reward predicate [r]
≤k
∼r consists of a reward structure r,

a time bound k ∈ N ∪ {∞}, a relational operator ∼ ∈ {≤, ≥} and a reward bound r ∈ Q. It indicates that the expected

total accumulated reward within k steps satisfies ∼ r .

Robust satisfaction of [r]
≤k
∼r by IMDP M under strategy σ ∈ Σ is denoted byM⇂σ |=Π [r]

≤k
∼r and indicates that the

expected total reward over the set of all paths under σ satisfies the bound ∼ r for every choice of nature π ∈ Π. Formally,

M⇂σ |=Π [r]
≤k
∼r iff ExpTot

σ ,k
M

[r] ∼ r where ExpTotσ ,k
M

[r] = optπ ∈Π
∫
ξ r[k](ξ ) dPr

σ ,π
M

and opt = min if ∼ = ≥ and

opt = max if ∼ = ≤. Furthermore, σ is referred to as the robust strategy.

For the purpose of algorithm design, we also consider weighted sum of rewards. Formally,

Definition 7 (Weighted Reward Sum). Given a weight vector w ∈ Rn , a vector of time bounds k = (k1, . . . ,kn ) ∈

(N ∪ {∞})n and reward structures r = (r1, . . . , rn ) for an IMDP M, the weighted reward sum w · r[k] over a path

ξ is defined as w · r[k](ξ ) =
∑n
i=1

wi · ri [k](ξ ). The expected total weighted sum is defined as ExpTot
σ ,k
M

[w · r] =

maxπ ∈Π
∫
ξ w · r[k](ξ ) dPr

σ ,π
M

for bounds ≤ and accordingly minimises over natures for ≥; for a given strategy σ , we

have: ExpTot
σ ,k
M

[w · r] =
∑n
i=1

wi · ExpTot
σ ,ki
M

[ri ].

3.1 Multi-objectiveQueries

Multi-objective properties for IMDPs essentially require multiple predicates to be satisfied at the same time under the

same strategy for every choice of the nature. We now explain how to formalise multi-objective queries for IMDPs.

Definition 8 (Multi-objective Predicate). A multi-objective predicate is a vector φ = (φ1, . . . ,φn ) of reachability or

reward predicates. We say that φ is satisfied by IMDPM under strategy σ for every choice of nature π ∈ Π, denoted by

M⇂σ |=Π φ if, for each 1 ≤ i ≤ n, we haveM⇂σ |=Π φi . We refer to σ as a robust strategy. Furthermore, we call φ a

basic multi-objective predicate if it is of the form ([r1]
≤k1

≥r1

, . . . , [rn]
≤kn
≥rn ), i.e., it includes only lower-bounded reward

predicates.

We formulate multi-objective queries for IMDPs in three ways namely, synthesis queries, quantitative queries, and

Pareto queries. We first formulate multi-objective synthesis queries for IMDPs as follows.

Definition 9 (Synthesis Query). Given an IMDPM and a multi-objective predicate φ, the synthesis query asks if there

exists a robust strategy σ ∈ Σ such thatM⇂σ |=Π φ.
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Note that the synthesis queries check for the existence of a robust strategy that satisfies a multi-objective predicate φ

for every resolution of nature.

The next type of queries is multi-objective quantitative queries which are defined as follows.

Definition 10 (Quantitative Query). Given an IMDP M and a multi-objective predicate φ, a quantitative query is of

the form qnt ([o]
≤k1

opt
, (φ2, . . . ,φn )), consisting of a multi-objective predicate (φ2, . . . ,φn ) of size n − 1 and an objective

[o]
≤k1

opt
where o is a target set T or a reward structure r, k1 ∈ N ∪ {∞} and opt ∈ {min,max}. We define:

qnt ([o]
≤k1

min
, (φ2, . . . ,φn )) = inf { x ∈ R | ([o]

≤k1

≤x ,φ2, . . . ,φn ) is satisfiable }

qnt ([o]
≤k1

max
, (φ2, . . . ,φn )) = sup{ x ∈ R | ([o]

≤k1

≥x ,φ2, . . . ,φn ) is satisfiable }.

Quantitative queries ask to maximise or minimise the reachability/reward objective over the set of strategies satisfying

a given multi-objective predicate φ.

The last type of queries is multi-objective Pareto queries which ask to determine the Pareto set for a given set of

objectives. Multi-objective Pareto queries are defined as follows.

Definition 11 (Pareto Query). Given an IMDP M and a multi-objective predicate φ, a Pareto query is of the form

Pareto([o1]
≤k1

opt
1

, . . . , [on]
≤kn
optn

), where each [oi ]
≤ki
opti

is an objective in which oi is either a target set Ti or a reward

structure ri , ki ∈ N ∪ {∞}, and opti ∈ {min,max}. We define the set of achievable values as A = { x ∈ Rn |
([o1]

≤k1

∼1x1
, . . . , [on]

≤kn
∼nxn ) is satisfiable } where ∼i = ≥ if opti = max, or ∼i = ≤ if opti = min. Then,

Pareto([o1]
≤k1

opt
1

, . . . , [on]
≤kn
optn

) = { x ∈ A | x is Pareto optimal }.

There are some corner cases under which our proposed algorithms would not work correctly, such as for instance

when the total expected reward could become infinite in a given model. Therefore, we need to limit the usage of rewards

by assuming reward-finiteness for the strategies that satisfy the

Assumption 1 (Reward-finiteness). Suppose that an IMDP M and a synthesis query φ are given. Let φ =

([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn , [rn+1]

≤kn+1

∼rn+1
, . . . , [rm]

≤km
∼rm ). We say that φ is reward-finite if for each n + 1 ≤ i ≤ m such that

ki = ∞, we have supσ ∈Σ{ ExpTot
σ ,ki
M

[ri ] | M⇂σ |=Π ([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn ) } < ∞.

In the next section we provide a method to check for reward-finiteness assumption of a given IMDP M and a

synthesis query φ, a preprocessing procedure that removes actions with non-zero rewards from the end components

ofM, and a proof for the correctness of this procedure with respect to φ. In the rest of the paper, we assume that all

queries are reward-finite. Furthermore, for the soundness of our analysis we also require that for any IMDP M and φ

given as in Assumption 1, the following properties hold: (i) each reward structure ri assigns only non-negative values;

(ii) φ is reward-finite; and (iii) for indices n + 1 ≤ i ≤ m such that ki = ∞, either all ∼i s are ≤ or all are ≥.

3.2 A Procedure to Check Assumption 1

In this section, we discuss in detail how reward-finiteness assumption for a given IMDPM and a synthesis query φ can

be checked. Once it is known that the assumption is satisfied, the IMDP M can then be pruned to simplify the analysis.

The idea underlying pruning is to remove transitions (and states) from the end-components that make the expected

reward infinite under strategies not satisfying the reachability constraints in φ. In order to describe the procedure that

checks Assumption 1, first we need to define a counterpart of end components ofMDPs for IMDPs, to which we refer as
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a strong end-component (SEC). Intuitively, a SEC of an IMDP is a sub-IMDP for which there exists a strategy that forces

the sub-IMDP to remain in the end component and visit all its states infinitely often under any nature. It is referred to

as strong because it is independent of the choice of nature. Formally,

Definition 12 (Strong End-Component). A strong end-component (SEC) of an IMDPM is EM = (S ′,A ′), where S ′ ⊆ S

and A ′ ⊆
⋃
s ∈S ′ {s} × A (s ) such that (1)

∑
s ′∈S ′ h

a
ss ′ = 1 for each s ∈ S ′, (s,a) ∈ A ′, and has ∈ H

a
s ; and (2) for each

s, s ′ ∈ S ′ there is a finite path ξ = ξ [0] · · · ξ [n] such that ξ [0] = s , ξ [n] = s ′, and for each 0 ≤ i ≤ n− 1 we have ξ [i] ∈ S ′

and (ξ [i], ξ (i )) ∈ A ′.

Remark 13. The SECs of an IMDPM can be identified by using any end-component-search algorithm of MDPs on its

underlying graph structure. That is, since the lower transition probability bounds ofM are strictly greater than zero for

the transitions whose upper probability bounds are non-zero, the underlying graph structure ofM is identical to the graph

structure of every MDP it contains. Therefore, a SEC ofM is an end-component of every contained MDP, and vice versa.

Lemma 14. If a state-action pair (s,a) is not contained in a SEC, then

sup

σ ∈Σ
inf

π ∈Π
occ

σ
π (s,a) < ∞,

where occ
σ
π (s,a) denotes the expected total number of occurrences of (s,a) under σ and π .

Proof. If (s,a) is not contained in a SEC ofM, then starting from s and under action a, the probability of returning

to s is less than one, independent of the choice of strategy and nature. The proof then follows from basic results of

probability theory. □

Proposition 15. Let EM = (S ′,A ′) denote a SEC of IMDPM. Then, we have supσ ∈Σ{ ExpTot
σ ,∞
M

[r] | M⇂σ |=Π

([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn ) } = ∞ for a reward structure r ofM if and only if there exists a strategy σ ofM thatM⇂σ |=Π

([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn ), EM is reachable under σ , and r(ξ [i], ξ (i )) > 0, where ξ is a path under σ with ξ [i] ∈ S ′ and

(ξ [i], ξ (i )) ∈ A ′(ξ [i]) for some i ≥ 0.

We can now construct, fromM, an IMDP
¯M that is equivalent toM in terms of satisfaction of φ but does not

include actions with positive rewards in its SEC. The algorithm is similar to the one introduced in [Forejt et al. 2011]

for MDPs and is as follows. First, remove action a from A (s ) if (s,a) is contained in a SEC and r(s,a) > 0 for some

maximising reward structure r. Second, recursively remove states with no outgoing transitions and transitions that

lead to non-existent states until a fixed point is reached.

Corollary 16. There is a strategy σ ofM such that ExpTot
σ ,∞
M

[r] = x < ∞ andM⇂σ |=Π φ if and only if there is a

strategy σ̄ of
¯M such that ExpTot

σ̄ ,∞
¯M

[r] = x and
¯M ⇂σ̄ |=Π φ.

3.3 Multi-Objective Robust Strategy Synthesis

We first study the computational complexity of multi-objective robust strategy synthesis problem for IMDPs. Formally,

Theorem 17. Given an IMDPM and a multi-objective predicate φ, the problem of synthesising a strategy σ ∈ Σ such

thatM⇂σ |=Π φ is PSPACE-hard.

As the first step towards derivation of a solution approach for the robust strategy synthesis problem, we need to

convert all reachability predicates to reward predicates and therefore, to transform an arbitrarily given query to a

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian, and Andrea Turrini

query over a basic predicate on a modified IMDP . This can be achieved simply by adding a reward of one at the time

of reaching the target set and also negating the objective of predicates with upper-bounded relational operators. We

correct and extend the procedure proposed in [Forejt et al. 2012] to reduce a general multi-objective predicate on an

IMDP model to a basic form on a modified IMDP .

Proposition 18. Given an IMDP M = (S, s̄,A, I ) and a multi-objective predicate φ =

([T1]
≤k1

∼1p1

, . . . , [Tn]
≤kn
∼npn , [rn+1]

≤kn+1

∼n+1rn+1
, . . . , [rm]

≤km
∼mrm ), let M ′ = (S ′, s̄ ′,A ′, I ′) be the IMDP whose components

are defined as follows:

• S ′ = S × 2
{1, ...,n }

;

• s̄ ′ = (s̄, ∅);

• A ′ = A × 2
{1, ...,n }

; and

• for all s, s ′ ∈ S , a ∈ A, and v,v ′,v ′′ ⊆ {1, . . . ,n},

I
′((s,v ), (a,v ′), (s ′,v ′′)) =




I (s,a, s ′) if v ′ = { i | s ∈ Ti } \v and v ′′ = v ∪v ′,

0 otherwise.

Now, let φ ′ = ([rT1
]
≤k1+1

≥p′
1

, . . . , [rTn ]
≤kn+1

≥p′n
, [r̄n+1]

≤kn+1

≥r ′n+1

, . . . , [r̄m]
≤km
≥r ′m

) where, for each i ∈ {1, . . . ,n},

p′i =



pi if ∼i = ≥,

−pi if ∼i = ≤;
and rTi ((s,v ), (a,v

′)) =




1 if i ∈ v ′ and ∼i = ≥,

−1 if i ∈ v ′ and ∼i = ≤,

0 otherwise;

and, for each j ∈ {n + 1, . . . ,m},

r ′j =



r j if ∼j = ≥,

−r j if ∼j = ≤;
and r̄j ((s,v ), (a,v

′)) =



rj (s,a) if ∼j = ≥,

−rj (s,a) if ∼j = ≤.

Then φ is satisfiable inM if and only if φ ′ is satisfiable inM ′.

Intuitively, the transformation ofM toM ′ works as follows: for the reachability predicates, we transform them

to reward predicates by assigning a reward of 1 the first time a state in the target set is reached; the information

about which target sets have been reached is kept in the v ⊆ {1, . . . ,n} component of the transformed state. For both

the original and the newly added reward predicates, we just transform the minimisation of positive rewards to the

maximisation of their negative values, so all rewards are maximised. By doing this, we also make the threshold in the

predicate comparison negative, e.g., we transform [Ti ]
≤ki
≤pi to [rTi ]

≤ki+1

≥−pi and [rj ]
≤kj
≤r j to [−rj ]

≤kj
≥−r j .

In [Forejt et al. 2012, Proposition 2] the thresholds are not made negative, and this is a flaw: consider for instance the

IMDP M which has only two states, the initial s0 and s1, and the non-[0, 0] transitions I (s0,a, s0) = I (s0,b, s1) = [1, 1];

let φ = ([{s1}]
≤1

≤0.5). ClearlyM⇂σ |=Π φ, by σ being the strategy choosing a in s0. In the transformed IMDP M ′,

the newly added reward structure r{s1 } assigns reward 0 to ((s0, ∅), (a, ∅)) and reward −1 to ((s0, ∅), (b, {1})); φ is

transformed to φ ′ = [r{s1 }]
≤2

≥−0.5, which is still satisfiable by the strategy choosing (a, ∅) in (s0, ∅). SinceM is also an

MDP, we can apply the transformation given in [Forejt et al. 2012, Proposition 2]:M ′ and r{s1 } are the same while φ is

transformed toψ = [r{s1 }]
≤2

≥0.5 (instead of [r{s1 }]
≤2

≥−0.5), which is obviously unsatisfiable given that r{s1 } assigns only

non-positive values to each state-action pair.
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(b) Pareto curve.

Fig. 2. Example of IMDP transformation. (a) The IMDP M′ generated fromM shown in Fig. 1. (b) Pareto curve for the property
([rT ]

≤2

max
, [r]

≤1

max
).

Example 19. To illustrate the transformation presented in Proposition 18, consider again the IMDP depicted in Fig. 1.

Assume that the target set is T = {t } and consider the property φ = ([T ]
≤1

≥ 1

3

, [r]
≤1

≥ 1

4

). The reduction converts φ to the

property φ ′ = ([rT ]
≤2

≥ 1

3

, [r]
≤1

≥ 1

4

) on the modifiedM ′ depicted in Fig. 2a. We show two different reward structures r̄ and

rT besides each action, respectively.

In Fig. 2b we show the Pareto curve for this property. As we see, the maximal reward value is 3 as long as we require

a probability at most
1

3
to reach T . Afterwards, the reward obtainable linearly decreases. If we require a reachability

probability forT of
2

5
, the reward obtained is just 1. For higher required probabilities and rewards, the problem becomes

infeasible. The reason for this behaviour is that, as long as we do not require the reachability probability for T to be

higher than
1

3
, action a can be chosen in state s , because the lower interval bound to reach t is 1

3
, which in turn leads to

a reward of 3 being obtained. For higher reachability probabilities required, choosing action b with a certain probability

is required, which however provides a lower reward. There is no strategy with which t is reached with a probability

larger than
2

5
. ♢

By means of Proposition 18, for robust strategy synthesis we therefore need to only consider the basic multi-objective

predicates of the form ([r1]
≤k1

≥r1

, . . . , [rn]
≤kn
≥rn ). For such a predicate, we define its Pareto curve as follows.

Definition 20 (Pareto Curve of a Multi-objective Predicate). Given an IMDP M and a basic multi-objective predicate

φ = ([r1]
≤k1

≥r1

, . . . , [rn]
≤kn
≥rn ), we define the set of achievable values with respect to φ as AM,φ = { (r1, . . . , rn ) ∈ R

n |

([r1]
≤k1

≥r1

, . . . , [rn]
≤kn
≥rn ) is satisfiable }. We define the Pareto curve of φ, denoted PM,φ , to be the Pareto curve of AM,φ .

It is not difficult to see that the Pareto curve is in general an infinite set, and therefore, it is usually not possible to

derive an exact representation of it in polynomial time. However, it can be shown that an ε-approximation of it can be

computed efficiently [Etessami et al. 2007].

In the remainder of this section, we describe an algorithm to solve the synthesis query. We follow the well-known

normalisation approach in order to solve the multi-objective predicate which is essentially based on normalising multiple
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Algorithm 1: Algorithm for solving robust synthesis queries

Input: An IMDP M, multi-objective predicate φ = ([r1]
≤k1

≥r1

, . . . , [rn ]
≤kn
≥rn )

Output: true if there exists a strategy σ ∈ Σ such thatM⇂σ |=Π φ , false if not.
1 begin
2 X := ∅;

3 r := (r1, . . . , rn );
4 k := (k1, . . . , kn );
5 r := (r1, . . . , rn );
6 while r < X↓ do
7 Find w separating r from X↓;
8 Find strategy σ maximising ExpTot

σ ,k
M

[w · r];

9 g := (ExpTot
σ ,ki
M

[ri ])1≤i≤n ;

10 if w · g < w · r then
11 return false;

12 X := X ∪ {g};

13 return true;

objectives into one single objective. It is known that the optimal solution of the normalised (single-objective) predicate,

if it exists, is the Pareto optimal solution of the multi-objective predicate [Ehrgott 2006].

The robust synthesis procedure is detailed in Algorithm 1. This algorithm aims to construct a sequential approximation

to the Pareto curve PM,φ while the quality of approximations gets better and more precise with each iteration. In other

words, along the course of Algorithm 1 a sequence of weight vectors w are generated and corresponding to each of

them, a w-weighted sum of n objectives is optimised through lines 8-9. The optimal strategy σ is then used in order to

generate a point g on the Pareto curve PM,φ . We collect all these points in the set X . The multi-objective predicate φ is

satisfiable once we realise that r belongs to X↓.
The optimal strategies for the multi-objective robust synthesis queries are constructed following the approach

of [Forejt et al. 2012] and as a result of termination of Algorithm 1. In particular, when Algorithm 1 terminates, a

sequence of points g1, . . . , gt on the Pareto curve PM,φ are generated each of which corresponds to a deterministic

strategy σgj for the current point g
j
. The resulting optimal strategy σopt is subsequently constructed from these using a

randomised weight vector α ∈ Rt satisfying ri ≤
∑t
j=1

αi · дi
j
, as we will explain in Section 4.

Remark 21. It is worthwhile to mention that the synthesis query for IMDPs cannot be solved on theMDPs generated from

IMDPs by computing all feasible extreme transition probabilities and then applying the algorithm of [Forejt et al. 2012]. The

latter is a valid approach provided the cooperative semantics is applied for resolving the two sources of nondeterminism in

IMDPs.With respect to the competitive semantics needed here, one can instead transform IMDPs to 2
1

2
-player games [Basset

et al. 2014] and then along the lines of the previous approach apply the algorithm of [Chen et al. 2013a]. Unfortunately, the

transformation to (MDPs or) 2
1

2
-player games induces an exponential blowup, adding an exponential factor to the worst

case time complexity of the decision problem. Our algorithm avoids this by solving the robust synthesis problem directly

on the IMDP so that the core part, i.e., lines 8-9 of Algorithm 1 can be solved with time complexity polynomial in |M|.

Algorithm 2 represents a value iteration-based algorithm which extends the value iteration-based algorithm of [Forejt

et al. 2012] and adjusts it for IMDP models by encoding the notion of robustness. More precisely, the core difference is

at lines 7 and 19, where the optimal strategy is computed so as to be robust against any choice of nature.

Theorem 22. Algorithm 1 is sound, complete, and has runtime exponential in |M|, k, and n.
Manuscript submitted to ACM
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Algorithm 2: Value iteration-based algorithm to solve lines 6-7 of Algorithm 1

Input: An IMDP M, weight vector w , reward structures r = (r1, . . . , rn ), time-bound vector k ∈ (N ∪ {∞})n , threshold ε
Output: strategy σ maximising ExpTot

σ ,k
M

[w · r], g := (ExpTot
σ ,ki
M

[ri ])1≤i≤n
1 begin
2 x := 0; x1

:= 0; . . . ; xn := 0;

3 y := 0; y1
:= 0; . . . ; yn := 0;

4 σ∞ (s ) := ⊥ for all s ∈ S ;
5 while δ > ε do
6 foreach s ∈ S do
7 ys := maxa∈A (s ) (

∑
{ i |ki=∞ } wi · ri (s, a) +minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ );

8 σ∞ (s ) := arg maxa∈A (s ) (
∑
{ i |ki=∞ } wi · ri (s, a) +minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ );

9 h̄
σ∞ (s )
s (s′) := arg minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ ;

10 δ := maxs∈S (ys − xs );
11 x := y;

12 while δ > ε do
13 foreach s ∈ S and i ∈ {1, . . . , n } where ki = ∞ do
14 yis := ri (s, σ∞ (s )) +

∑
s′∈S h̄

σ∞ (s )
s (s′) · x is′ ;

15 δ := max
n
i=1

maxs∈S (yis − x
i
s );

16 x1
:= y1

; . . . ; xn := yn ;

17 for j = max{ kb < ∞ | b ∈ {1, . . . , n } } down to 1 do
18 foreach s ∈ S do
19 ys := maxa∈A (s ) (

∑
{ i |ki ≥j } wi · ri (s, a) +minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ );

20 σ j (s ) := arg maxa∈A (s ) (
∑
{ i |ki ≥j } wi · ri (s, a) +minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ );

21 h̄
σ j (s )
s (s′) := arg minhas ∈H

a
s

∑
s′∈S h

a
s (s
′) · xs′ ;

22 foreach i ∈ {1, . . . , n } where ki ≥ j do
23 yis := ri (s, σ j (s )) +

∑
s′∈S h̄

σ j (s )
s (s′) · x is′ ;

24 x := y; x1
:= y1

; . . . ; xn := yn ;

25 for i = 1 to n do
26 дi := yis̄ ;

27 σ acts as σ j in jth step when j < maxi∈{1, . . .,n} ki and as σ∞ afterwards;

28 return σ , g;

Remark 23. It is worthwhile to mention that our robust strategy synthesis approach can also be applied to MDPs with

richer formalisms for uncertainties such as likelihood or ellipsoidal uncertainties while preserving the computational com-

plexity. In particular, in every inner optimisation problem in Algorithm 1, the optimality of aMarkovian deterministic strat-

egy and nature is guaranteed as long as the uncertainty set is convex, the set of actions is finite and the inner optimisation

problem which minimises/maximises the objective function over the choices of nature achieves its optimum (cf. [Puggelli

2014, Proposition 4.1]). Furthermore, due to the convexity of the generated optimisation problems, the computational com-

plexity of our approach remains intact.

3.4 Multi-ObjectiveQuantitativeQueries

In this section we discuss multi-objective quantitative queries and present algorithms to solve them. In particular, we

follow the same direction as [Forejt et al. 2012] and show how Algorithm 1 can be adapted to solve these types of

queries.
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Algorithm 3: Algorithm for solving robust quantitative queries

Input: An IMDP M, objective [r1]
≤k1

max
, multi-objective predicate ([r2]

≤k2

≥r2

, . . . , [rn ]
≤kn
≥rn )

Output: value of qnt ([r1]
≤k1

max
, ([r2]

≤k2

≥r2

, . . . , [rn ]
≤kn
≥rn ))

1 begin
2 X = ∅;
3 r = (r1, . . . , rn );

4 k = (k1, . . . , kn );

5 r = (minσ ∈Σ ExpTot
σ ,k
M

[r1], r2, . . . , rn );
6 while r < X↓ or w · g > w · r do
7 Find w separating r from X↓ such that w1 > 0;

8 Find strategy σ maximising ExpTot
σ ,k
M

[w · r];

9 g := (ExpTot
σ ,ki
M

[ri ])1≤i≤n ;

10 if w · g < w · r then
11 return ⊥;

12 X = X ∪ {g};
13 r1 := max{r1, max{ r ′ | (r ′, r2, . . . , rn ) ∈ X↓ }};

14 return r1;

To present the algorithm, consider the quantitative query qnt ([r1]
≤k1

max
, ([r2]

≤k2

≥r2

, . . . , [rn]
≤kn
≥rn ). Algorithm 3, similarly

to Algorithm 1, generates a sequence of points g on the Pareto curve from a sequence of weight vectors w. In order to

optimise the objective r1, a sequence of lower bounds r1 is generated which are used in the same manner as Algorithm 1.

In particular, in the initial step we let r1 be the minimum value for r1 that can be computed with an instance of value

iteration [Puggelli 2014]. The sequence of non-decreasing values for r1 are generated at the next steps based on the set

of points X specified so far. In each step, the computation in the lines 8-9 of Algorithm 3 can again be achieved using

Algorithm 2.

At this point it is worthwhile to mention that Algorithm 3 is different from its counterpart [Forejt et al. 2012,

Algorithm 3] especially concerning lines 5, 8-9. In fact, all computations in these lines are performed while considering

the behaviour of an adversarial nature as detailed in Algorithm 2.

3.5 Multi-Objective ParetoQueries

We finally provide an algorithmic solution to compute Pareto queries. As for Algorithm 3, this algorithm is in fact

designed as an adaption of Algorithm 1 as detailed below.

Our algorithm to solve Pareto queries is depicted as Algorithm 4 which is in principle an extension of its counterpart

for MDPs [Forejt et al. 2012, Algorithm 4]. Similarly to Algorithm 3, the key differences of this algorithm with its

counterpart are in lines 5-6 and 11-12. We present the algorithm with respect to two objectives; note that it can be

extended easily to any finite number of objectives. Since the number of faces of the Pareto curve is exponentially large

in the size of the model, the step bound, and the number of objectives and also the result of the value iteration algorithm

to compute the individual points is an approximation, Algorithm 4 only constructs an ε-approximation of the Pareto

curve.
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Algorithm 4: Algorithm for solving robust Pareto queries

Input: An IMDP M, reward structures r = (r1, r2), time bounds (k1, k2), ε ∈ R≥0

Output: An ε -approximation of the Pareto curve

1 begin
2 X = ∅;

3 Y : R2 → 2
R2

with initial Y (x ) = ∅ for all x ;
4 w = (1, 0);

5 Find strategy σ maximising ExpTot
σ ,k
M

[w · r];

6 g := (ExpTot
σ ,k1

M
[r1], ExpTot

σ ,k2

M
[r2]);

7 X := X ∪ {g};
8 Y (g) := Y (g) ∪ {w};
9 w := (0, 1);

10 while w , ⊥ do
11 Find strategy σ maximising ExpTot

σ ,k
M

[w · r];

12 g := (ExpTot
σ ,k1

M
[r1], ExpTot

σ ,k2

M
[r2]);

13 X := X ∪ {g};
14 Y (g) := Y (g) ∪ {w};
15 w := ⊥;

16 Order X to a sequence x1, . . . , xm such that ∀i : x i
1
≤ x i+1

1
and x i

2
≥ x i+1

2
;

17 for i = 1 tom do
18 Let u be the element of Y (xi ) with maximal u1;

19 Let u′ be the element of Y (xi+1) with minimal u′
1
;

20 Find a point p such that u · p = u · xi and u′ · p = u′ · xi+1
;

21 if distance of p from X↓ is ≥ ε then
22 Find w separating X↓ from p, maximising w · p −maxx∈X↓w · x;
23 break;

24 return X ;

3.6 PLTL and ω-regular Properties

PLTL formulas, or in general ω-regular properties, allow one to express properties of an IMDP with respect to its

infinite behaviour. Examples of PLTL formulas are: with probability at least 0.95, the IMDP will never be trapped

in an error state (Pr≥0.95[GF¬error]); almost surely, whenever a request arrives, eventually a response is provided

(Pr≥1[G(req =⇒ Fresp)]); with probability at least 0.99, the system eventually becomes stable (Pr≥0.99[FGstable]).
The classical approach to verify a PLTL formula Pr▷◁p [Ψ], or an ω-regular property, against an MDP M consists in

constructing a deterministic Rabin automaton (DRA) RΨ accepting the same words satisfying Ψ, then construct the

productM× RΨ , find the accepting maximal end components ofM× RΨ , and then compute the probability of reaching

the union of such end components. We refer the interested reader to [Baier and Katoen 2008] for more details.

In the remaining part of this section we present how to analyse ω-regular properties against an IMDPM. In practice,

the construction is the extension to IMDPs of the approach for MDPs.

Definition 24 (Product IMDPM × R). For given IMDP M = (S, s̄,A, I ,AP, L) and DRA R = (Q, q̄, 2AP ,T ,Acc) with

Acc = {(A1,R1), . . . , (Ak ,Rk )}, the productM × R is the IMDP M × R = (S ×Q, s̄ ′,A, I ′,Q, L′) where

• s̄ ′ = (s̄,T (q̄, L(s̄ ));

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Ernst Moritz Hahn, Vahid Hashemi, Holger Hermanns, Morteza Lahijanian, and Andrea Turrini

• I
′((s,q),a, (s ′,q′)) =




I (s,a, s ′) if q′ = T (q, L(s ′)),

[0, 0] otherwise; and

• L
′(s,q) = {q}.

Similarly to the MDP case, we can prove that the probability ofM to satisfy Ψ equals the probability of reaching

accepting SECs inM × RΨ , where a SECM
′
ofM × RΨ with states S ′ and labelling L

′
is accepting if there exists

1 ≤ i ≤ k such that Ai ∩ L
′(S ′) , ∅ and Ri ∩ L

′(S ′) = ∅.

Theorem 25. LetM be an IMDP, Ψ an LTL formula, and U be the union of all accepting SECs inM × RΨ . Then for

each strategy σ forM there exist a strategy σ ′ forM×RΨ such that for each nature π forM there exists a nature π ′ for

M × RΨ such that

Pr
σ ,π
M

[{ ξ ∈ IPathsM | ξ |= Ψ }] = Pr
σ ′,π ′
M×RΨ

[{ ξ ∈ IPathsM×RΨ
| ∃j ∈ N : ξ [j] ∈ U }]

and vice-versa.

Proof. The proof is a minor adaptation of the one forMDPs (cf. [Baier and Katoen 2008; Bianco and de Alfaro 1995]).

Intuitively, strategy σ ′ is built out of σ as for the MDP setting, while nature π ′ is defined to mimic exactly π . □

As an immediate consequence of Theorem 25, we also have that the robust probability of satisfying Ψ under a

strategy σ forM coincides with the robust probability of reaching accepting SECs under some strategy σ ′ forM ×RΨ .

Corollary 26. LetM be an IMDP, Pr∼p [Ψ] a PLTL formula, andU be the union of all accepting SECs inM×RΨ ; let

Π′ denote the set of natures forM ×RΨ . Then for each strategy σ forM there exists a strategy σ ′ forM ×RΨ such that

opt

π ∈Π
Pr
σ ,π
M

[{ ξ ∈ IPaths | ξ |= Ψ }] = opt

π ′∈Π′
Pr
σ ′,π ′
M×RΨ

[{ ξ ∈ IPaths | ∃j ∈ N : ξ [j] ∈ U }]

and vice-versa, where opt = min if ∼ = ≥ and opt = max if ∼ = ≤.

By means of Theorem 25 and Corollary 26, we can extend the results about multi-objective (quantitative) queries

(cf. Sec. 3.1 and 3.4) and Pareto queries (cf. Sec. 3.5) to general PLTL and ω-regular properties, by following a similar

approach as shown in [Etessami et al. 2007].

4 GENERATION OF RANDOMISED STRATEGIES

In this section we describe how randomised strategies can be obtained as weighted sum of deterministic strategies. We

consider a fixed IMDP M = (S, s̄,A, I ) and a basic multi-objective predicate ([r1]
≤k1

≥r1

, . . . , [rn]
≤kn
≥rn ). For clarity, we

assume that all ki = ∞; we discuss the extension to ki < ∞ afterwards. In the following, we will describe how we can

obtain a randomised strategy from the results computed by Algorithms 1, 3, and 4. These algorithms compute a set

X = {g1, . . . , gm } of reward vectors gi = (дi,1, . . . ,дi,n ) and their corresponding set of strategies Σ = {σ1, . . . ,σm },

where strategy σi achieves the reward vector gi .
In the descriptions of the given algorithms, the strategies σi are not explicitly stored and mapped to the reward they

achieve, but they can be easily adapted. All used strategies are memoryless (due to the assumption that ki = ∞) and

deterministic; this means that we can treat them as functions of the form σi : S → A or, equivalently, as functions

σi : S × A → {0, 1} where σi (s,a) = 1 if σi (s ) = a and σi (s, · ) = 0 otherwise.

From the setX , we can compute a set P = {p1, . . . ,pm } of the probabilities with which each of these strategies shall be

executed. If we execute each σi with its according probability pi , the vector of total expected rewards is g =
∑m
i=1

pi · gi .
Manuscript submitted to ACM
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Let r = (r1, . . . , rn ) denote the vector of reward bounds of the multi-objective predicate. To obtain P after having

executed Algorithm 1, we can choose the values pi in P such that they fulfil the constraints

∑m
i=1

gi ·pi ≥ r,
∑m
i=1

pi = 1,

and pi ≥ 0 for each 1 ≤ i ≤ m. For the other algorithms, P can be computed accordingly.

To obtain a stochastic process with expected values g, we initially randomly choose one of the memoryless determin-

istic strategies σi according to their probabilities in P . Afterwards, we just keep executing the chosen σi . The initial

choice of the strategy to execute is the only randomised choice to be made. We do not perform a random choice after

the initial choice of σi .

This process of obtaining the expected rewards g indeed uses memory, because we have to remember the deter-

ministic strategy which was randomly chosen to be executed. On the other hand, we only need a very limited way of

randomisation.

We like to emphasise that indeed we cannot just construct a memoryless randomised strategy by choosing the

strategy σi with probability pi in each step anew.

s t

u v

w

a, 1

b, 0

a, 0

b, 1

a, 0

b, 0

a, 0

b, 0

a, 0

b, 0

Fig. 3. Computing randomised
strategies.

Example 27. Consider the IMDP in Fig. 3. We only have two possible actions, a and b.

The initial state is s and all probability intervals are the interval [1, 1], which we omit for

readability; thus, there is also only one possible nature π . There is only a single reward

structure, indicated by the underlined numbers. If we choose a in state s , we end up in

t in the next step and obtain a reward of 1 with certainty, while if we choose b, we will

be in u in the next step and obtain a reward of 0, and accordingly for the other states.

We consider the strategies σa which chooses a in each state and σb which chooses b

in each state. With both strategies, we accumulate a reward of exactly 1. Therefore, if we

choose to execute σa with probability 0.5 and σb with the same probability, this process

will lead to a reward of 1 as well.

Now, consider a strategy which chooses the action selected by σa in each state with

probability 0.5, and with the same probability chooses the action selected by σb . It is easy

to see that this strategy only obtains a reward of 0.5 · 1 + 0.5 · 0.5 · 1 = 0.75. As we see, this naive way of combining the

two deterministic strategies into a memoryless randomised strategy is not optimal. ♢

Thus, the way to construct a memoryless randomised strategy is somewhat more involved. We will have to compute

the state-action frequencies, that is the average number of times a given state-action pair is seen.

At first, we fix an arbitrary memoryless nature π : FPaths×A → Disc(S ), that is, π : S ×A → Disc(S ). The particular

choice of π is not important, which is due to the fact that our algorithms are robust against any choice of nature. We

then let xσi (s ) denote the probability to be in state s at step i when strategy σ is used (using nature π and under the

condition that we have started in s̄).

For any σ ∈ Σ, we have xσi (s ) =
∑
{ ξ ∈FPaths |last (ξ )=s, |ξ |=i } Pr

σ ,π
M

(Cylξ ), which can be shown to be equivalent to

the inductive form xσ
0
(s̄ ) = 1 and xσ

0
(s ) = 0 for s , s̄ , and xσi+1

(s ) =
∑
s ′∈S π (s

′,σ (s ′)) (s ) · xσi (s ′).

The state-action frequency yσ (s,a) is the number of times action a is chosen in state s when using strategy σ . We

then have that yσ (s,a) =
∑∞
i=0

xσi (s ) · σ (s,a). Thus, state-action frequencies can be approximated using a simple value

iteration scheme. The mixed state-action frequency y (s,a) is the average over all state action frequencies weighted by

the probability with which a given strategy is executed. Thus, y (s,a) =
∑m
i=1

pi · y
σi (s,a) for all s,a. To construct a
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memoryless randomised strategy σ , we normalise the probabilities to σ (s,a) =
y (s,a)∑

b∈A y (s,b )
for all s ∈ S and a ∈ A (s )

(see also the description for the computation of strategies/adversaries below [Forejt et al. 2011, Proposition 4]).

Example 28. In the model of Fig. 3, we have yσa (s,a) = 1, yσa (s,b) = 0, yσa (u,a) = 0, yσa (u,b) = 0, yσb (s,a) = 0,

yσb (s,b) = 1, yσb (u,a) = 0, and yσb (u,b) = 1. If we choose both σa and σb with probability 0.5, we obtain the mixed

state-action frequencies y (s,a) = 0.5, y (s,b) = 0.5, y (u,a) = 0, and y (u,b) = 0.5. The memoryless randomised strategy

σ we can construct is then σ (s,a) = 0.5, σ (s,b) = 0.5, σ (u,a) = 0, σ (u,b) = 1, which indeed achieves a reward of 1. ♢

For the general case where ki < ∞ for some ki , we have to work with counting deterministic strategies and natures.

Let kmax be the largest non-infinite step bound. The usage of memory is unavoidable here because it is required

already in case of a single step-bounded objective. To achieve optimal values, the computed strategies have to be

able to make their decision dependent on how many steps are left before the step bound is reached. Thus, we have

strategies of the form σi : S × {0, . . . ,kmax} → A or equivalently σi : S × {0, . . . ,kmax} ×A → {0, 1} where σi (s, j,a) = 1

if σi (s, j ) = a and σi (s, j, · ) = 0 otherwise. For step i with i < kmax, a strategy σ chooses action σ (s, i ) for state s

whereas for all i ≥ kmax the decision σ (s,kmax) is used. Natures are of the form π : S × A × {0, . . . ,kmax} → Disc(S ).

The computation of the randomised strategy changes accordingly: for any σ ∈ Σ, we have xσ
0
(s̄ ) = 1, xσ

0
(s ) = 0 for

s , s̄ , and xσi+1
(s ) =

∑
s ′∈S π (s

′,σ (s ′, i ′), i ′) (s ) · xσi′ (s
′) where i ′ = min{i,kmax}. Also the state-action frequencies are

now defined as step-dependent. For i ∈ {0, . . . ,kmax − 1} we define yσ (s, i,a) = xσi (s ) · σ (s, i,a) and yσ (s,kmax,a) =∑
i≥kmax

xσi (s ) · σ (s,a).

The mixed state-action frequency is then y (s, i,a) =
∑m
j=1

pj · y
σj (s, i,a). Again using normalisation we define the

counting randomised strategy σ (s, i,a) =
y (s,i,a)∑

b∈A y (s,i,b )
. Here, for step i with i < kmax we use decisions from σ ( · , i, · )

while for i ≥ kmax we use decisions from σ ( · ,kmax, · ).

The bounded step case can be derived from the unbounded step case in the following sense: we can transform the

IMDP and the predicate into an unrolled IMDP . Here, we encode the step bounds in the state space as follows: we copy

the state space S a number of kmax + 1 times to a new state space S
unrolled

=
⋃̇
i ∈{0, ...,kmax }

Si . We call each set of states

Si a layer. For each state s ∈ S and i ∈ {0, . . . ,kmax} we have si ∈ Si . If we have a transition from a state s to a state s ′,

in the unrolled IMDP for all i ∈ {0, . . . ,kmax − 1} we have an according transition from si to si+1 instead. We also have

a transition from skmax
to s ′kmax

. Formally, for i < kmax we have I
unrolled (si ,a, s

′
i+1

) = I (s,a, s ′) for some states s, s ′ and

some action a and zero else, and then I
unrolled (skmax

,a, s ′kmax

) = I (s,a, s ′). Thus, there are only transitions from a one

layer to the next layer, except for layer kmax which behaves like the original IMDP .

Reward structures are defined as follows. We assume that each reward property uses a different reward structure. For

unbounded reward properties using reward structure r, we just let runrolled (si ,a) = r(s,a) for all i and states s . For a

step bounded reward property with bound k we define a modified reward structure as follows: for layers 0 to k − 1, the

reward is obtained as usual, that is runrolled (si ,a) = r(s,a) for i ∈ {0, . . . ,k − 1}. However, to simulate the step bound,

we let r(si ,a) = 0 for i ≥ k .

By removing the step bound from predicate, we can now analyse the unrolled IMDP and obtain the same result as in

the original IMDP using the original step bounded predicate. As we are considering only unbounded properties, we

obtain a set of memoryless deterministic strategies. We can then construct a counting strategy for the original model by

mapping the layer number to the step number, that is σ (s, i,a) = σunrolled (si ,a). In this way, we can show the correctness

of the above strategy computation for the step bounded case, because then also the values for the state action frequencies

carry over, that is e.g. y (s, i,a) = yunrolled (si ,a). Note that for i < kmax in yunrolled,σ (si ,a) =
∑∞
j=0

xσj (si ) · σ (si ,a) only

the summand for j = i is relevant. This is the case because by construction of the unrolled IMDP for the other j with j , i
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(a) Robot Environment
(b) Pareto Curve

Fig. 4. Simple-Task Robotic Scenario. (a) Environment map, where obstacles and target are shown in black and grey, respectively. (b)
Pareto curve for the property ([rp ]

≤∞
max

, [rd ]
≤∞
min

).

we have xσj (si ) = 0. Thus, yunrolled,σ (si ,a) = xσi (si ) · σ (si ,a). Accordingly, for y
unrolled,σ (skmax

,a) =
∑∞
j=0

xσj (skmax
) ·

σ (skmax
,a) only j with j ≥ kmax are relevant and thus yunrolled,σ (skmax

,a) =
∑∞
j≥kmax

xσj (skmax
) · σ (skmax

,a).

5 CASE STUDIES

We implemented the proposed multi-objective robust strategy synthesis algorithms and applied them to three case

studies: (1) simple-task motion planning for a robot with noisy continuous dynamics, (2) motion planning for a

warehouse robot with complex tasks, and (3) autonomous nondeterministic tour guides drawn from [Cantino et al.

2007; Hashemi et al. 2016]. All experiments took a few seconds to complete on a standard laptop PC.

5.1 Simple-Task Motion Planning under Uncertainty

In robot motion planning, designers often seek a plan that simultaneously satisfies multiple objectives [Lahijanian and

Kwiatkowska 2016], e.g.,maximising the chances of reaching the target while minimising the energy consumption. These

objectives are usually in conflict with each other; hence, presenting the Pareto curve, i.e., the set of achievable points

with optimal trade-off between the objectives, is helpful to the designers. They can then choose a point on the curve

according to their desired guarantees and obtain the corresponding plan (strategy) for the robot. In this case study,

we considered such a motion planning problem for a noisy robot with continuous dynamics in an environment with

obstacles and a target region, as depicted in Fig. 4a. The robot’s motion model was a single integrator with additive

Gaussian noise. The initial state of the robot was on the bottom-left of the environment. The objectives were to reach

the target safely while minimising the energy consumption, which is proportional to the travelled distance.

We approached this problem by first abstracting the motion of the noisy robot in the environment as an IMDP M

and then computing strategies onM as in [Luna et al. 2014a,b,c]. The abstraction was achieved by partitioning the

environment into a grid and computing local (continuous) controllers to allow transitions from every cell to each of its

neighbours. The cells and the local controllers were then associated to the states and actions of the IMDP , respectively,

resulting in 204 states (cells) and 4 actions per state. The boundaries of the environment were also associated with a
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(a) φ1
(b) φ2 (c) φ3

Fig. 5. Robot sample paths under strategies for φ1, φ2, and φ3

state. Note that the transition probabilities between cells were raised by the noise in the dynamics and their ranges

were due to variation of the possible initial robot (continuous) state within each cell.

The guarantee that can be provided for the original continuous system is that the computed bounds (both for the

probability of satisfaction and expected travelled distance) on the abstracted IMDP also hold for the continuous system

(cf. [Luna et al. 2014b]). For a single robot, these bounds provide a measure of “goodness” of the robot’s performance.

For a swarm of robots, these bounds provide guarantees on the number of robots that can safety make it to the target

while respecting the distance constraint.

The IMDP states corresponding to obstacles (including boundaries) were given deterministic self-transitions, mod-

elling robot termination as the result of a collision. To allow for the computation of the probability of reaching target,

we included an extra state in the IMDP with a deterministic self-transition and then added incoming deterministic

transitions to this state from the target states. A reward structure rp , which assigns a reward of 1 to these transitions

and 0 to all the others, in fact, computes the probability of reaching the target. To capture the travelled distance, we

defined a reward structure rd assigning a reward of 0 to the state-action pairs with self-transitions and 1 to the rest.

The two robot objectives then can be expressed as: ([rp ]
≤∞
max
, [rd ]

≤∞
min

). We first computed the Pareto curve for the

property, which is shown in Fig. 4b, to find the set of all achievable values (optimal trade-offs) for the reachability

probability and expected travelled distance. The Pareto curve shows that there is clearly a trade-off between the two

objectives. To achieve high probability of reaching target safely, the robot needs to travel a longer distance, i.e., spend

more energy, and vice versa. We chose three points on the curve and computed the corresponding robust strategies for

φ1 = ([rp ]
≤∞
≥0.95

, [rd ]
≤∞
≤50

), φ2 = ([rp ]
≤∞
≥0.90

, [rd ]
≤∞
≤45

), φ3 = ([rp ]
≤∞
≥0.66

, [rd ]
≤∞
≤25

).

We then simulated the robot under each strategy 500 times. The statistical results of these simulations are consistent

with the bounds in φ1, φ2, and φ3. The collision-free robot trajectories are shown in Fig. 5. These trajectories illustrate

that the robot is conservative under φ1 and takes a longer route with open spaces around it to reach the target in order

to be safe (Fig. 5a), while it becomes reckless under φ3 and tries to go through a narrow passage with the knowledge

that its motion is noisy and could collide with the obstacles (Fig. 5c). This risky behaviour, however, is required in order

to meet the bound on the expected travelled distance in φ3. The sample trajectories for φ2 (Fig. 5b) demonstrate the
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(a) Warehouse Environment (b) Pareto Curves

Fig. 6. Warehouse Robotic Scenario. (a) Warehouse map, where the product pick-up locations and drop-off zones are shown in grey
and obstacles in black. (b) Pareto curves for the properties (Prmax=?[ψi ], [rt ]

≤∞
min

) for i ∈ {4, 5}.

stochastic nature of the strategy. That is, the robot probabilistically chooses between being safe and reckless in order to

satisfy the bounds in φ2.

5.2 Warehouse Robot Planning with Complex Tasks

In this case study, we consider a warehouse scenario in which a robot is tasked to collect ordered products and deliver

them to a drop-off zone. For optimal productivity, the robot should perform the tasks in the minimum amount of time

and with the minimum amount of damages to itself and to the products by avoiding obstacles. The robot model is the

same as the one in Sec. 5.1, and the warehouse map is shown in Fig. 6a. In this figure, the pick-up locations for product

i is marked by pi , and the drop-off zones are marked by D.

We constructed the IMDP model of this robot in the similar manner as in Sec. 5.1. We labelled the states of the

IMDP with their propositions pi for 1 ≤ i ≤ 4, drop-off, and obstacle. Moreover, we assign a reward of 5 denoting the

maximum duration of time (in seconds) it takes the robot to make a transition from one cell to another. The IMDP had

a total of 205 states and 4 actions per state.

We consider two orders (tasks):

• “Pick up product p1 and deliver it to a drop-off zone and always avoid obstacles,” and

• “Pick up products p1, p2, and p3 in any order and deliver them to a drop-off zone, and avoid drop-off zones until

all three products are gathered, and always avoid obstacles.”

The corresponding LTL formulas, respectively, are:

ψ4 = G¬obstacle ∧ F(p1 ∧ Fdrop-off), ψ5 = G¬obstacle ∧
3∧
i=1

(¬drop-off U pi ) ∧ Fdrop-off.

Therefore, the pair of objectives for each task can be expressed as (Pmax[ψi ], [rt ]
≤∞
min

) for i ∈ {4, 5}, where rt corresponds

to the reward structure for time. To compute the Pareto curves, we first constructed the corresponding Rabin automata

and the product IMDPs for tasksψ4 andψ5. The IMDPs had 617 and 2,462 states, respectively, and four actions per state.

The Pareto curves for the above multi-objective formulas are shown in Fig. 6b. Then, we computed the robust strategies
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for the following properties (Pareto points):

φ6 = (Pr≥0.43[ψ4], [rt ]
≤∞
≤90

), φ7 = (Pr≥0.67[ψ4], [rt ]
≤∞
≤200

), φ8 = (Pr≥0.80[ψ4], [rt ]
≤∞
≤270

),

φ9 = (Pr≥0.41[ψ5], [rt ]
≤∞
≤130

), φ10 = (Pr≥0.49[ψ5], [rt ]
≤∞
≤200

), φ11 = (Pr≥0.65[ψ5], [rt ]
≤∞
≤400

).

The sample robot trajectories under these strategies are shown in Fig. 7, where the initial position of the robot is

indicated by a dark-blue disk. From the figures, it is evident that the robot chooses longer paths that are safer as more

time is allowed. For properties φ6-φ8 that correspond to taskψ4, the robot chooses the shortest path to p1 by first going

down through the narrow passage and then returning on the same path to the drop-off zone when only 90s are allowed

(Fig. 7a). This path however has a higher risk to incur a damage. When 200s are given, the robot uses a mixture of two

paths that are less risky as shown in Fig. 7b. One path leads the robot down, through the narrow passage, between

the shelves, and finally straight up to the drop-off zone. The other path takes the robot left, then down through the

middle of the warehouse to the bottom right p1, returning on the similar path in the middle, and finally to the drop-off

zone on the left side. For the bound of 270s, the robot chooses only the latter path, which is the safest path that has the

most open spaces (Fig. 7c). A similar trend is observed for φ9-φ11 but at larger time duration since taskψ5 requires a

collection of three products as shown in Figs. 7d-7f. Finally, we computed the probability and average time duration

for 500 sample paths under each strategy, and the obtained values were within the bounds for φ6-φ11, validating the

proposed approach.

(a) φ6 (b) φ7 (c) φ8

(d) φ9 (e) φ10 (f) φ11

Fig. 7. Robot sample paths under strategies for φ6-φ11. The robot’s initial position is indicated by a dark-blue disk and the paths are:
(a) down-p1-up-D , (b) mixture of two paths of down-p1-middle-up-D and left-middle-down-p1-middle-up-left-D , (c) left-middle-down-
p1-middle-up-left-D , (d) down-p2-p1-p3-middle-up-D , (e) mixture of two paths: down-p1-p2-p3-middle-up-right-D and left-middle-
down-p3-down-p2-p1-middle-up-right-D , (f) left-middle-down-right-p1-p2-p3-middle-up-left-D .
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(a) The ANTG model for n = 14. The yellow, black, and green cells represent
the entrance, closed, and exit parts of the museum, respectively. The red arrows
indicate an example strategy.
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(b) The Pareto Curve

Fig. 8. The ANTG case study: model and analysis

5.3 The Model of Autonomous Nondeterministic Tour Guides

Our second case study is inspired by “Autonomous Nondeterministic Tour Guides” (ANTG) in [Cantino et al. 2007;

Hashemi et al. 2016], which models a complex museum with a variety of collections. We note that the model introduced

in [Cantino et al. 2007] is an MDP . In this case study, we use an IMDP model by inserting uncertainties into the MDP .

Due to the popularity of the museum, there are many visitors at the same time. Different visitors may have different

preferences of arts. We assume the museum divides all collections into different categories so that visitors can choose

what they would like to visit and pay tickets according to their preferences. In order to obtain the best experience, a

visitor can first assign certain weights to all categories denoting their preferences to the museum, and then design the

best strategy for a target. However, the preference of a sort of arts to a visitor may depend on many factors like price,

weather, or the length of queue at that moment, etc., hence it is hard to assign fixed values to these preferences. In our

model we allow uncertainties of preferences such that their values may lie in an interval.

For simplicity we assume all collections are organised in an n×n square with n ≥ 10, with (0, 0) being the south-west

corner of the museum and (n − 1,n − 1) the north-east one. Let c = n−1

2
; note that (c, c ) is at the centre of the museum.

We assume all collections at (x ,y) are assigned with a weight interval [3, 4] if max{|x − c |, |y − c |} ≤ n
10
, with a weight

2 if
n
10
< max{|x − c |, |y − c |} ≤ n

5
, and a weight 1 if max{|x − c |, |y − c |} > n

5
. In other words, we expect collections in

the centre to be more popular and subject to more uncertainties than others. Furthermore, we assume that people at

each location (x ,y) have four nondeterministic choices of moving to (x ′,y′) in the north east, south east, north west,

and south west of (x ,y) (limited to the boundaries of the museum). The outcome of these choices, however, is not

deterministic. That is, deciding to go to (x ′,y′) takes the visitor to either (x ,y′) or (x ′,y) depending on the weight

intervals of (x ,y′) and (x ′,y). Thus, the actual outcome of the move is probabilistic. To obtain an IMDP , weights are

normalised. For instance, if the visitor chooses to go to the north east and on (x ,y + 1) there is a weight interval of [3, 4]

and on (x + 1,y) there is a weight interval of [2, 2], it will go to (x ,y + 1) with probability interval [3/(3 + 2), 4/(4 + 2)]

and to (x + 1,y) with probability interval [2/(2 + 4), 2/(2 + 3)].

Therefore a model with parameter n has n2
states in total and roughly 4n2

transitions, a few of which are associated

with uncertain transition probabilities. An instance of the museum model for n = 14 is depicted in Fig. 8a. In this

instantiation, we assume that the visitor starts in the lower left corner (marked yellow) and wants to move to the upper
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right corner (marked green) with as few steps as possible. On the other hand, she wants to avoid moving to the black

cells, because they correspond to exhibitions which are closed. For closed exhibitions located at x = 2, the visitor receive

a penalty of 2, for those at x = 5 it receives a penalty of 4, for x = 8 one of 16 and for x = 11 one of 64. Therefore, there

is a trade-off between leaving the museum as fast as possible and minimising the penalty received. With rs being the

reward structure for the number of steps and rp denoting the penalty accumulated, ([rs ]
≤∞
≤40
, [rp ]

≤∞
≤70

) requires that we

leave the museum within 40 steps but with a penalty of no more than 70. The red arrows indicate a strategy which

has been used when computing the Pareto curve by our tool. Here, the visitor mostly ignores closed exhibitions at

x = 2 but avoids them later. We provide the Pareto curve for this situation in Fig. 8b. With an increasing step bound

considered acceptable, the optimal accumulated penalty decreases. This is expected, because with an increasing step

bound, the visitor has more time to walk around more of the closed exhibitions, thus facing a lower penalty.

In Fig. 9, we provide strategies for different points on the Pareto curve in Fig. 8b. The lowest expected number of

steps in which the museum can be left is 30.9665389. To achieve this number, there is a single optimal strategy sketched

in Fig. 9a. As we see, the tourist indeed leaves the museum as soon as possible, by ignoring any closed exhibitions and

thus by receiving an expected penalty as high as 152.0609886.

In Fig. 9b and Fig. 9c, we give the tourist somewhat more time, namely 31 steps, so that the penalty of 151.7077821

is a bit lower. Here, with a high probability (0.9894174) the same strategy as for the previous case is chosen. With a

probability of 0.0105826 however, the less reckless strategy of Fig. 9c is used, which takes some efforts to avoid the last

row of closed exhibitions at x = 11.

If we further increase the time bound to 40, as in Fig. 9d and Fig. 9e, the strategies used become even less risky but

more time consuming to execute.

For a step bound of 76.8658133 and larger, it is possible to avoid receiving any penalty by using the strategy of Fig. 9f,

which circumvents all closed exhibitions.

6 CONCLUDING REMARKS

In this paper, we have analysed interval Markov decision processes under controller synthesis semantics in a dynamic

setting. In particular, we discussed the problem of multi-objective robust control of IMDPs where our goal is to generate

an approximation of the Pareto curve for synthesis, quantitative, and Pareto queries. The approximated Pareto curves for

various queries include all non-dominated solutions each of which corresponds to a robust strategy that satisfies a given

multi-objective predicate under all resolutions of the uncertainty in the transition probabilities. The core part of our

approach to approximate Pareto curves of the multi-objective queries was to optimise the weighted sum of objectives

which was in turn achieved through a value iteration algorithm. Our designed value iteration algorithm could handle

optimising mixture of time bounded and unbounded properties simultaneously which is not the case in standard value

iteration algorithms. Additionally, our value iteration algorithm ensures the scalability of our solution methodology

compared to linear programming based approaches to optimise the weighted sum of objectives. As we discussed, our

proposed approach for optimal control of IMDPs with multiple objectives can also be applied to approximate Pareto

curves forMDPs with convex uncertainty sets as well as ω-regular properties such as PLTL. We finally presented results

obtained with a prototype tool on several real-world case studies to show the effectiveness of the developed algorithms.

For future work, we aim to explore the upper bound of the time complexity of the multi-objective robust strategy

synthesis problem for IMDPs which is left open in this paper.
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(a) Probability 1

30.9665389 steps, 152.0609886 penalty

(b) Probability 0.9894174 (c) Probability 0.0105826

31 steps, 151.7077821 penalty

(d) Probability 0.7230247 (e) Probability 0.2769753

40 steps, 59.0123994 penalty

(f) Probability 1

76.8658133 steps, 0 penalty

Fig. 9. Strategies for different points on the Pareto curve in Fig. 8a.
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A PROOFS OF THE RESULTS ENUNCIATED IN THE PAPER

This appendix contains the proofs of the results enunciated in the main part of the paper.

In order to prove Theorem 17, we need to define the multiple reachability problem for MDPs. Formally,

Definition 29. Given an MDP M and a reachability predicate described as a vector φ = (φ1, . . . ,φn ) where φ j =

[Tj ]
≤kj
∼pj for j ∈ {1, . . . ,n}, the multiple reachability problem asks to check if there exists a strategy σ of M such that

M,σ |= φ. The almost-sure multiple reachability problem restricts to ∼ = ≥ and pj = 1 for all j ∈ {1, . . . ,n}.

The proof makes also use of the following lemma:

Lemma 30 (Complexity of the multi-objective reachability problem for MDPs [Randour et al. 2015]). Given

an MDP M, the almost-sure multiple reachability problem is PSPACE-complete and strategies need exponential memory

in the query size.

Proof of Theorem 17. We reduce the problem in Lemma 30 to the one under our analysis. In fact, any instance of

the multiple reachability problem forMDP M can be seen as an instance of the multi-objective robust strategy synthesis

problem for an IMDP M generated from M by replacing all probability values with point intervals. Since the multiple

reachability problem for MDPs is PSPACE-complete and the reduction is performed in polynomial time therefore,

solving the robust strategy synthesis problem for IMDPs is at least PSPACE-hard. □

Proof of Theorem 22. The proof follows closely the one in [Forejt et al. 2012]. In every iteration of the loop in

Algorithm 1, a point g on a unique face of the Pareto curve is identified. The number of faces of the Pareto curve

PM,φ is, in the worst case, exponential in |M|, k, and n [Etessami et al. 2007]. Therefore, termination of Algorithm 1

is guaranteed and the correctness is ensured as a result of the correctness of Algorithm 1 in [Forejt et al. 2012]. The

soundness and completeness of the Algorithm 1 is followed by the fact that in every iteration of the algorithm through

lines 8-9, the individual model checking problems can be solved in polynomial time in |M| by formulating the weighted

sum of n objectives as a linear programming problem. To see this, without loss of generality, assume that ki = ∞ for all

i ∈ {1, . . . ,n}. Therefore, following the approach in [Puggelli 2014], the problem of maximising the ExpTot
σ ,k
M

[w · r]

across the range of strategies σ ∈ Σ can be formulated as the following optimisation problem:

min

x
xT 1

subject to:

xs ≥
∑n
i=1

wi · ri (s,a) + min

has ∈H
a
s
xT has ∀s ∈ S,∀a ∈ A (s )

We now modify the above optimisation problem to simplify derivation of the LP problem. To this aim, we transform the

optimisation operator “min” to “max”. Therefore, we get the following optimisation problem:

max

x
−xT 1

subject to:

xs ≥
∑n
i=1

wi · ri (s,a) + min

has ∈H
a
s
xT has ∀s ∈ S,∀a ∈ A (s )

As it is clear from the set of constraints in the latter optimization problem, the inner optimisation problem is not linear.

In order to overcome this difficulty and induce the LP formulation, we follow the techniques in [Puggelli 2014] and use
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dual of the inner optimisation problem. To this aim, consider the inner optimisation problem with fixed x:

P (x) := min

has ∈H
a
s
xT has

Based on the general description of the interval uncertainty setH a
s = { h

a
s | 0⃗ ≤ h

a
s ≤ h

a
s ≤ h

a
s ≤ 1⃗, 1T has = 1 }, we can

rewrite the latter inner optimisation problem as:

P (x) := min xT has
subject to:

1T has = 1

has ≤ h
a
s ≤ h

a
s

The dual of the above problem is formulated as follows:

D (x) := max

γ s,aj,1 ,γ s,aj,2 ,γ s,aj,3

γ s,aj,1 + h
a
s
Tγ s,aj,2 − h

a
s
T
γ s,aj,3

subject to:

x − γ s,aj,2 + γ
s,a
j,3 − γ

s,a
j,1 1 = 0

γ s,aj,2 ≥ 0,γ s,aj,3 ≥ 0

Since the latter inner optimisation problem with fixed x is an LP, therefore due to the strong duality theorem [Bertsimas

and Tsitsiklis 1997], we have P∗ (x) = D∗ (x) where P∗ (x) and D∗ (x) are the primal and dual optimal values, respectively.

Therefore, we can replace the original inner optimisation problem with its dual LP to derive the ultimate LP formulation.

Note that the inner optimisation operator is removed as the outer optimisation operator will find the least underestimate

to maximise its objective function. Hence, maximising the expected total reward for IMDPM with respect to the reward

structure w · r is formulated as the following LP which can in turn be solved in polynomial time.

max

x,γ
−xT 1

subject to:

xs ≥
∑n
i=1

wi · ri (s,a) + γ
s,a
j,1 + h

a
s
Tγ s,aj,2 − h

a
s
T
γ s,aj,3 ∀s ∈ S,∀a ∈ A (s )

x − γ s,aj,2 + γ
s,a
j,3 − γ

s,a
j,1 1 = 0 ∀s ∈ S,∀a ∈ A (s )

γ s,aj,2 ,γ
s,a
j,3 ≥ 0 ∀s ∈ S,∀a ∈ A (s )

□

Proof of Proposition 18. Given a state (s,v ) ∈ S ′, let ve = { i ∈ {1, . . . ,n} | s ∈ Ti } \ v . By definition of

the transition probability function, it follows that the only successors (s ′,v ′) that can be reached from (s,v ) must

have v ′ = v ∪ ve ; moreover, the action performed for such a transition must be of the form (a,ve ). This means

that the sets ve and v ′ are uniquely determined by the current state (s,v ); let ν : S ′ → 2
{1, ...,n }

be the function

such that ν (s,v ) = { i ∈ {1, . . . ,n} | s ∈ Ti } \ v for each (s,v ) ∈ S ′, νA : S ′ × A → A ′ be the function such

that νA ((s,v ),a) = (a,ν (s,v )) for each (s,v ) ∈ S ′ and a ∈ A, and νS : S ′ × S → S ′ be the function such that

νS ((s,v ), s
′) = (s ′,v ∪ ν (s,v )) for each (s,v ) ∈ S ′ and s ′ ∈ S .

It is immediate to see that every path ξ ′ ofM ′, ξ ′ = (s0,v0) (a0,v
′
0
) (s1,v1) (a1,v

′
1
) (s2,v2) . . . , is actually of the form

ξ ′ = (s0,v0)νA ((s0,v0),a0) (s1,v1)νA ((s1,v1),a1) (s2,v2) . . . where (sj+1,vj+1) = νS ((sj ,vj ), sj+1) for each j ∈ N,

i.e., vj+1 = vj ∪ ν (sj ,vj ). This means that we can define a bijection ♯ : Paths → Paths
′
as follows: given a path
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ξ = s0a0s1a1s2 . . . ofM, ♯(ξ ) is defined as ♯(ξ ) = (s0,v0) (a0,v
′
0
) (s1,v1) (a1,v

′
1
) (s2,v2) . . . where v0 = ∅ and for each

j ∈ N, (aj ,v
′
j ) = νA ((sj ,vj ),aj ) and (sj+1,vj+1) = νS ((sj ,vj ), sj ).

The inverse ♭ : Paths′ → Paths of ♯ is just the projection onM: given a path ξ ′ = (s0,v0) (a0,v
′
0
) (s1,v1) (a1,v

′
1
) (s2,v2) . . .

ofM ′, ♭(ξ ′) is defined as ♭(ξ ′) = s0a0s1a1s2 . . . .

Moreover, since the sequence of sets v0v1v2 . . . is monotonic non-decreasing with respect to the subset inclusion

partial order, we have that, for a given i ∈ {1, . . . ,n}, if i ∈ vN for some N ∈ N, then there exists exacly one l ∈ N such

that i < vj for each 0 ≤ j < l and i ∈ vj for each j ≥ l , i.e., sl is the first time a state s ∈ Ti occurs along ♭(ξ
′). Therefore,

it follows that i ∈ ν (sl ,vl ) while i < ν (sj ,vj ) for each j ∈ N \ {l }. This implies that rTi (ξ
′
[l], ξ ′(l )) = 1 if ∼i = ≥ or

rTi (ξ
′
[l], ξ ′(l )) = −1 if ∼i = ≤ while rTi (ξ

′
[j], ξ ′(j )) = 0 for each j ∈ N \ {l }, thus

rTi [k](ξ ′) =




1 if l < k and ∼i = ≥,

−1 if l < k and ∼i = ≤,

0 otherwise.

Note that, if i < vj for each j ∈ N, then this means that i < ν (sj ,vj ) for each j ∈ N, thus rTi (ξ
′
[j], ξ ′(j )) = 0 for each

j ∈ N and rTi [k](ξ ′) = 0.

Similarly, for each h ∈ {n + 1, . . . ,m}, we get that r̄h[k](ξ ′) = rh[k](ξ ) if ∼h = ≥ and r̄h[k](ξ ′) = −rh[k](ξ ) if

∼h = ≤.

We are now ready to prove the statement of the proposition, by considering the two implications separately.

Suppose that φ is satisfiable inM: by definition, it follows that there exists a strategy σ ofM such thatM⇂σ |=Π φ,

that is,M⇂σ |=Π [Ti ]
≤ki
∼ipi for each i ∈ {1, . . . ,n} andM⇂σ |=Π [rh]

≤kh
∼hrh for each h ∈ {n + 1, . . . ,m}. Let σ ′ be the

strategy ofM ′ such that, for each finite path ξ ′ ∈ FPaths′ and action a ∈ A, σ (ξ ′) (νA (last (ξ ′),a)) = σ (♭(ξ ′)) (a), 0

otherwise. Intuitively, σ ′ chooses the next action (a,v ) exactly as σ chooses a since v is uniquely determined by ξ ′. We

claim that σ ′ is such thatM ′⇂σ ′ |=Π φ ′.

Let i ∈ {1, . . . ,n} and consider φ ′i = [rTi ]
≤ki+1

≥p′i
: there are two cases depending on the original bound ∼i .

If ∼i = ≥, then [rTi ]
≤ki+1

≥p′i
= [rTi ]

≤ki+1

≥pi ;M ′⇂σ ′ |=Π′ [rTi ]
≤ki+1

≥pi if and only if minπ ′∈Π′
∫
ξ ′ rTi [ki +1](ξ ′) dPr

σ ′,π ′
M′

≥

pi . Since for each path ξ ′ ∈ Paths′, rTi [ki +1](ξ ′) = 1 if there exists l < ki +1 such that ♭(ξ ′)[l] ∈ Ti , rTi [ki +1](ξ ′) = 0

otherwise, by the way I
′
and σ ′ are defined it follows that minπ ′∈Π′

∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

= minπ ∈Π Pr
σ ,π
M
{ ξ ∈

IPaths | ∃l ≤ k : ξ [l] ∈ Ti }. Since by hypothesis φ is satisfiable inM, then it follows that minπ ∈Π Pr
σ ,π
M
{ ξ ∈ IPaths |

∃l ≤ k : ξ [l] ∈ Ti } ≥ pi , thus minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

≥ pi holds as well, henceM
′⇂σ ′ |=Π′ [rTi ]

≤ki+1

≥pi =

[rTi ]
≤ki+1

≥p′i
is satisfied, as required.

Consider now the second case: if ∼i = ≤, then [rTi ]
≤ki+1

≥p′i
= [rTi ]

≤ki+1

≥−pi ;M ′⇂σ ′ |=Π′ [rTi ]
≤ki+1

≥−pi if and only if

minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

≥ −pi . Since for each path ξ ′ ∈ Paths
′
, rTi [ki + 1](ξ ′) = −1 if there exists

l < ki + 1 such that ♭(ξ ′)[l] ∈ Ti , rTi [ki + 1](ξ ′) = 0 otherwise, by the way I
′
and σ ′ are defined it follows that

minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

= −maxπ ∈Π Pr
σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti }. Since by hypothesis we

have that φ is satisfiable in M, then it follows that maxπ ∈Π Pr
σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≤ pi , thus

minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

≥ −pi holds as well, henceM
′⇂σ ′ |=Π′ [rTi ]

≤ki+1

≥−pi = [rTi ]
≤ki+1

≥p′i
is satisfied, as

required.

This completes the analysis of the case φ ′i = [rTi ]
≤ki+1

≥p′i
for each i ∈ {1, . . . ,n}.

Let h ∈ {n + 1, . . . ,m} and consider φ ′h = [r̄h]
≤kh
≥r ′h

: there are two cases depending on the original bound ∼h .
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If ∼h = ≥, then [r̄h]
≤kh
≥r ′h
= [r̄h]

≤kh
≥rh ;M

′⇂σ ′ |=Π′ [r̄h]
≤kh
≥rh holds if and only if minπ ′∈Π′

∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥ rh

holds. Since for each path ξ ′ ∈ Paths′, r̄h[k](ξ ′) = rh[k](♭(ξ ′)), by the way the components I
′
, r̄h , and σ

′
are defined

it follows that minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

= minπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M

. Since by hypothesis φ is satisfiable in

M, then it follows that minπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≥ rh , thus minπ ′∈Π′

∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥ rh holds as well,

henceM ′⇂σ ′ |=Π′ [r̄h]
≤kh
≥rh = [r̄h]

≤kh
≥r ′h

is satisfied, as required.

Consider now the second case: if ∼h = ≤, then [r̄h]
≤kh
≥r ′h

= [r̄h]
≤kh
≥−rh ; M

′⇂σ ′ |=Π′ [r̄h]
≤kh
≥−rh if and only if

minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥ −rh . Since for each path ξ ′ ∈ Paths′, r̄h[k](ξ ′) = −rh[k](♭(ξ ′)), by the way I
′
, r̄h ,

and σ ′ are defined it follows that minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

= −maxπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M

. Since by hypothe-

sisφ is satisfiable inM, then it follows that maxπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≤ rh , thus minπ ′∈Π′

∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥

−rh holds as well, henceM ′⇂σ ′ |=Π′ [r̄h]
≤kh
≥−rh = [r̄h]

≤kh
≥r ′h

is satisfied, as required.

This completes the analysis of the case φ ′h = [r̄h]
≤kh
≥r ′h

for each h ∈ {n + 1, . . . ,m}; sinceM ′⇂σ ′ |=Π′ φ
′
j for each

j ∈ {1, . . . ,m}, it follows that φ is satisfiable inM ′, as required to prove that “if φ is satisfiable inM, then φ ′ is satisfiable

inM ′”.

Suppose now the other implication, namely “if φ ′ is satisfiable inM ′, then φ is satisfiable inM” and assume that

φ ′ is satisfiable inM ′: by definition, it follows that there exists a strategy σ ′ ofM ′ such thatM ′⇂σ ′ |=Π′ φ
′
, that

is,M ′⇂σ ′ |=Π′ [rTi ]
≤ki+1

≥p′i
for each i ∈ {1, . . . ,n} andM ′⇂σ ′ |=Π′ [r̄h]

≤kh
≥r ′h

for each h ∈ {n + 1, . . . ,m}. Let σ be the

strategy ofM such that, for each finite path ξ ∈ FPaths and action a ∈ A, σ (ξ ) (a) = σ ′(♯(ξ )) (a,v ), 0 otherwise,

where (a,v ) = νA (last (♯(ξ )),a). Intuitively, σ chooses the next action a exactly as σ ′ chooses (a,v ) since v is uniquely

determined by ξ ′. We claim that σ is such thatM⇂σ |=Π φ.

Let i ∈ {1, . . . ,n} and consider φi = [Ti ]
≤ki
∼ipi : there are two cases depending on the bound ∼i .

If ∼i = ≥, thenM⇂σ |=Π [Ti ]
≤ki
≥pi if and only if minπ ∈Π Pr

σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≥ pi . Since for each

path ξ ∈ Paths, rTi [ki + 1](♯(ξ )) = 1 if there exists l < ki + 1 such that ξ [l] ∈ Ti , rTi [ki + 1](♯(ξ )) = 0 otherwise, by

the way I
′
and σ are defined it follows that minπ ∈Π Pr

σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } = minπ ′∈Π′

∫
ξ ′ rTi [ki +

1](ξ ′) dPr
σ ′,π ′
M′

. Since by hypothesisφ ′ is satisfiable inM ′, then it follows that minπ ′∈Π′
∫
ξ ′ rTi [ki +1](ξ ′) dPr

σ ′,π ′
M′

≥ pi ,

thus minπ ∈Π Pr
σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≥ pi holds as well, henceM⇂σ |=Π [Ti ]

≤ki
≥pi = [Ti ]

≤ki
∼ipi is satisfied,

as required.

Consider now the second case: If ∼i = ≤, thenM⇂σ |=Π [Ti ]
≤ki
≤pi if and only if maxπ ∈Π Pr

σ ,π
M
{ ξ ∈ IPaths | ∃l ≤

k : ξ [l] ∈ Ti } ≤ pi . Since for each path ξ ∈ Paths, rTi [ki + 1](♯(ξ )) = −1 if there exists l < ki + 1 such that ξ [l] ∈ Ti ,

rTi [ki + 1](♯(ξ )) = 0 otherwise, by the way I
′
and σ are defined it follows that maxπ ∈Π Pr

σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k :

ξ [l] ∈ Ti } = −minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

. Since by hypothesis φ ′ is satisfiable inM ′, then it follows that

minπ ′∈Π′
∫
ξ ′ rTi [ki + 1](ξ ′) dPr

σ ′,π ′
M′

≥ −pi , thus maxπ ∈Π Pr
σ ,π
M
{ ξ ∈ IPaths | ∃l ≤ k : ξ [l] ∈ Ti } ≤ pi holds as well,

henceM⇂σ |=Π [Ti ]
≤ki
≤pi = [Ti ]

≤ki
∼ipi is satisfied, as required.

This completes the analysis of the case φi = [Ti ]
≤ki
∼ipi for each i ∈ {1, . . . ,n}.

Let h ∈ {n + 1, . . . ,m} and consider φh = [rh]
≤kh
∼hrh : there are two cases depending on the original bound ∼h .

If ∼h = ≥, then M⇂σ |=Π [rh]
≤kh
≥rh if and only if minπ ∈Π

∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≥ rh . Since for each path ξ ∈

Paths, r̄h[k](♯(ξ )) = rh[k](ξ ), by the way I
′
, r̄h , and σ are defined it follows that minπ ∈Π

∫
ξ rh[kh](ξ ) dPr

σ ,π
M
=
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minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

. Since by hypothesis φ ′ is satisfiable inM ′, then minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥

rh , thus minπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≥ rh holds as well, henceM⇂σ |=Π [rh]

≤kh
≥rh = [rh]

≤kh
∼hrh is satisfied, as required.

Consider now the second case: if ∼h = ≤, thenM⇂σ |=Π [rh]
≤kh
≤rh if and only if maxπ ∈Π

∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≤ rh .

Since for each path ξ ∈ Paths, −r̄h[k](♯(ξ )) = rh[k](ξ ), by the definition of the components I
′
, r̄h , and σ it is

the case that maxπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M
= −minπ ′∈Π′

∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

. Since by hypothesis φ ′ is satisfiable

inM ′, then minπ ′∈Π′
∫
ξ ′ r̄h[kh](ξ ′) dPr

σ ′,π ′
M′

≥ −rh , thus maxπ ∈Π
∫
ξ rh[kh](ξ ) dPr

σ ,π
M
≤ rh holds as well, hence

M⇂σ |=Π [rh]
≤kh
≤rh = [rh]

≤kh
∼hrh is satisfied, as required.

This completes the analysis of the case φh = [rh]
≤kh
∼hrh for each h ∈ {n + 1, . . . ,m}; sinceM⇂σ |=Π φ j for each

j ∈ {1, . . . ,m}, it follows that φ is satisfiable inM, as required to prove that “if φ ′ is satisfiable inM ′, then φ is satisfiable

inM”. Having proved both implications, the statement of the proposition “φ is satisfiable inM if and only if φ ′ is

satisfiable inM ′” holds, as required. □

Proof of Proposition 15. We prove this proposition by adapting the proof from [Forejt et al. 2011, Proposition 1].

Direction⇒. Assume that, for a reward structure r, sup{ ExpTot
σ ,∞
M

[r] | M⇂σ |=Π ([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn ) } = ∞.

From Lemma 14, it follows that if state-action pair (s,a) occurs infinitely often, s and a are contained in a SEC EM .

Therefore, to satisfy the assumed condition, there must exist some strategy σ such thatM⇂σ |=Π ([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn )

and a SEC is reachable, in which σ picks action a at reachable state s with positive probability, and r(s,a) > 0.

Direction⇐. Assume that there is a strategy σ such thatM⇂σ |=Π ([T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn ), a SEC EM = (S ′,A ′) is

reachable, and r(ξ [n], ξ (n)) > 0, where ξ is a finite path of length n + 1 under σ with ξ [n] ∈ S ′ and ξ (n) ∈ A ′(ξ [n])

for some n ≥ 0. To complete the proof, it is enough to show that there is a sequence of strategies {σk }k ∈N under which

(i) the probabilistic predicates [T1]
≤k1

∼p1

, . . . , [Tn]
≤kn
∼pn are satisfied and (ii) limk→∞ ExpTot

σk ,k
M

[r] = ∞.

(i) Let ξ [n] = s and ξ (n) = a. For k ∈ N consider σk that

• for the paths that do not have the prefix ξ , σk emulates σ .

• when the path ξ is performed, σk forces the system to stay in EM containing (s,a). After k occurrences of (s,a),

the next time s is visited, the strategy σk emulates σ again as if the performed path segment after ξ [n] was never

executed.

Under σk , the reachability predicates are satisfied for any k ∈ N. To see this, consider θk that maps each path ξ of σ to

the paths of σk . We now have θ (ξ ) ∩ θ (ξ ′) = ∅ for all ξ , ξ ′, and for all sets Ω and two natures π and πk , where πk

emulates π the same way σk emulates σ , we have Prσ ,π
M

(Ω) = Pr
σk ,πk
M

(θ (Ω)), independent of the choice of πk during

the execution of the path segment that σk forces the stay in EM . The satisfaction of the reachability predicates under

each σk follows from the fact that, for any path ξ of σ , ξ satisfies a reachability predicate iff each path in θ (Ω) satisfies

the reachability predicate.

(ii) To show that limk→∞ ExpTot
σk ,k
M

[r] = ∞, recall that the probability of reaching (s,a) under σk for the first time is

some positive value p1. From the properties of SEC, the probability of returning to s within l steps, where l = |S |, is also

some positive value p2. By construction, (s,a) is picked k times, therefore, ExpTot
σk ,k
M

[r] ≥ p1p2

k
l r(s,a), and hence,

limk→∞ ExpTot
σk ,k
M

[r] = ∞. □
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