
Automatic Deployment of Autonomous Cars in a
Robotic Urban-Like Environment (RULE)

M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. B. Andersson

Abstract— We present a computational framework and ex-
perimental setup for deployment of autonomous cars in a
miniature Robotic Urban-Like Environment (RULE). The spec-
ifications are given in rich, human-like language as temporal
logic statements about roads, intersections, and parking spaces.
We use transition systems to model the motion and sensing
capabilities of the robots and the topology of the environment
and use tools resembling model checking to generate robot
control strategies and to verify the correctness of the solution.
The experimental setup is based on Khepera III robots, which
move autonomously on streets while observing traffic rules.

I. INTRODUCTION

In formal analysis, finite models of computer programs
and digital circuits are checked against rich specifications
given as temporal logic statements about the satisfaction of
properties of interest. Examples include safety, i.e., some-
thing bad never happens and liveness, i.e., something good
eventually happens. Such specifications translate naturally
to formulas of temporal logics, such as Linear Temporal
Logic (LTL) and Computation Tree Logic (CTL) [1]. Due
to their resemblance to natural language, expressivity, and
existence of off-the-shelf algorithms for model checking,
temporal logics are used to specify properties of other types
of dynamic systems [2], [3], [4], including robotic systems
[5], [6], [7]. In these works, in order to use a temporal logic
as a specification language and a model checking algorithm
for analysis, the main challenge is to construct a property-
preserving finite abstraction of an infinite model [8].

A particularly important application in mobile robotics is
deployment of autonomous cars in urban environments. In
such a scenario, an autonomous car equipped with sensing,
communication, and computation capabilities is required to
accomplish a rich temporal logic motion specification, e.g.,
“keep surveying roads R1 and R2 until an empty parking
space is found, and then park”, while at the same time
obeying traffic laws, staying in lane, and avoiding collisions
with other moving cars or static obstacles for all times. The
importance of this problem led to the 2007 DARPA Urban
Challenge [9], where autonomous cars were provided with
a rough map of a city and required to autonomously drive
from an initial to a final point while staying on the road and
obeying traffic laws.

This work was supported by NSF under grants IIS-0822845 and IIS
CAREER-0447721 at Boston University.

M. Lahijanian, M. Kloetzer, C. Belta, and S. B. Andersson
are with the College of Engineering at Boston University,
{morteza,kmarius,cbelta,sanderss}@bu.edu.

S. Itani is with the School of Engineering at Massachusetts Institute of
Technology, itani@mit.edu.

M. Lahijanian is the corresponding author.

In this paper, we present a computational framework and
an experimental setup for deployment of autonomous cars
in a miniature Robotic Urban-Like Environment (RULE)
(see Fig. 1 and the project web site http://iasi.bu.
edu/rule/). In our setup, Khepera III car-like robots
can be automatically deployed according to arbitrarily rich
temporal logic specifications about visiting points of interest
in the environment such as streets, intersections, and parking
spaces, while at the same time being guaranteed to stay in
their lanes, obey traffic rules, and avoid collisions with other
cars and obstacles. An example of such a specification is
“Visit Road R1 and then Road R9 infinitely often. If Road R8

is ever visited, then Road R3 should never be reached.” In our
framework, such specifications given in human-like language
translate to formulas of LTL. A modelling framework based
on transition systems and synchronous products [10] allows
for automatic generation of motion plans and robot control
laws by using tools resembling LTL model checking [1].

This paper is closely related to [7], where a compu-
tational framework for automatic deployment of car-like
robots from temporal logic specifications was developed.
While this paper and [7] approach the same problem, the
solution presented here allows for more expressivity in the
specification. Specifically, any LTL formula is allowed as
a specification in our framework, while [7] are limited to
formulas in the GR(1) fragment of LTL [11]. On the other
hand, our framework cannot capture environmental events as
in [7]. The use of synchronous products in our work allows
for an extension to the multi-robot case, which is left for
future work. All these advantages come at the expense of an
increased amount of computation. In this paper we focus on
a purely discrete scenario, where the motion of the robot is
described from the very beginning as a finite state transition
graph. However, the implementation to simple continuous
dynamics is immediate by using our previous results on
discrete abstractions [4], [12].

II. PRELIMINARIES

Definition 1: A transition system with observations is a
tuple T = (Q,Q0,Σ,→,Π,�), where Q is a finite set
of states, Q0 ⊆ Q is the set of initial states, Σ is a
finite set of actions (inputs, events), →⊆ Q × Σ × Q
is a transition relation, Π is a set of atomic propositions
(properties, observations), and �⊆ Q × Π is a satisfaction
relation.

A transition system T is called deterministic if, for all
σ ∈ Σ available at an arbitrary state q ∈ Q, there exists a
unique q′ ∈ Q such that q σ→ q′. For a transition system

http://iasi.bu.edu/rule/
http://iasi.bu.edu/rule/


T , we denote by R(T ) the transition system obtained by
keeping only the states from T that are reachable from the
set of initial states Q0 (and the corresponding transitions).

Definition 2: Let Ti = (Qi, Q0i,Σ,→i,Πi,�i), i =
1, . . . , k be a set of transition systems with the same set
of inputs. The synchronous product of Ti, i = 1, . . . , k,
denoted by T1 ‖ . . . ‖ Tk, is the transition system T =
R((Q ,Q0 ,Σ ,→,Π ,�)) defined by:
• Q = Q1 × . . .×Qk;
• Q0 = Q01 × . . .×Q0k;
• ((q1, . . . , qk), σ, (q′1, . . . , q

′
k)) ∈→ if (qi, σ, q′i) ∈→i;

• Π = ∪i=1,...,kΠi;
• (q1, . . . , qk) � π if there exists i = 1, . . . , k such that
qi �i π.

A more general definition of a synchronous product, which
allows for different sets of inputs for the transition systems
Ti, can be found in [13].

In this paper, we consider motion specifications given in
rich, human-like language that translate immediately to Lin-
ear Temporal Logic (LTL) formulas. Informally, LTL formu-
las are recursively defined over a set of atomic propositions
Π, by using the standard Boolean and temporal operators,
which include © (“next”), U (“until”), � (“always”), ♦
(“eventually”). LTL formulas are interpreted over infinite
words in the power set 2Π of Π, as are those generated by
the transition system T from Definition 1.

Given a finite transition system T and an LTL formula
φ over Π, checking whether the words of T starting from
each state in Q satisfy φ is called LTL model checking, or
simply model checking in this paper. An off-the-shelf model
checker such as NuSMV [14] takes a transition system T and
a formula φ as input and returns the states of T at which the
formula is satisfied (i.e., the states for which the language
originating there satisfies the formula). For the non-satisfying
states, a model checker returns a non-satisfying run as a
certifying counter-example.

Alternatively, a dual control problem can be formulated for
a transition system T : given an LTL formula φ over its set of
propositions, find a set of initial states and a control strategy
such that all the words produced by T satisfy the formula. We
approached this problem in our previous work, and proposed
solutions for both deterministic and nondeterministic systems
[4], [15]. For deterministic systems, the solution is presented
in the form of a “shortest” satisfying run with a prefix-suffix
structure, which determines a unique control strategy.

III. PROBLEM FORMULATION AND APPROACH

We define an Urban Environment as a collection of Roads,
Intersections, Traffic Lights, and Parking Spaces with the fol-
lowing restrictions: (1) a road connects two (not necessarily
different) intersections; (2) the parking spaces can only be
located on the side of (each bound of) a road; (3) there
is a traffic light for each bound of a road arriving at an
intersection; (4) at each intersection, the traffic lights are
synchronized in the usual way (traffic lights corresponding
to opposing roads are in phase and in opposite phase with
traffic lights on orthogonal roads). An example is given in

Fig. 2, which is a schematic representation of the miniature
city platform shown in Fig. 1.

The “cars” in our city are Khepera III miniature robots (
Sec. VI-A). We assume that each car can (i) drive forward
on a road while staying in the right lane, (ii) “sense”
intersections and parking spaces, (iii) turn left, right, or move
straight through an intersection, (iv) detect the right lane of
a road at the end of an intersection, and (v) distinguish
the color of a traffic light (Sec. VI-A). We want to be
able to automatically generate robot control strategies from
rich specifications given as temporal logic statements about
visiting roads, intersections, and parking spots. Specifically,
we consider the following problem:

Problem 1: Given an urban environment with a set of
roads R, set of intersections I, set of parking spaces P ,
and a motion task in terms of an arbitrary LTL formula over
the set R∪I ∪P , find a robot control strategy such that the
produced motion of the robot satisfies the specification.

For example, for the environment shown schematically in
Fig. 2, a motion task can be of the form “Visit R1 and then
eventually R9 in this order, infinitely often. If R8 is ever
reached, make sure that R3 is never visited.” The translation
of this human-like language specification to an LTL formula
is given in Eqn. (1). To complete the formulation of Problem
1, we need to define a robot control strategy and the
satisfaction of an LTL specification by a motion of a robot
in the environment. Both of these definitions will be given
after introducing robot and environment models in the form
of transition systems in Sec. IV.

Our approach to Problem 1 is as follows. We first model
the motion and sensing capabilities of the robot as a robot
transition system TR. The states of TR model robot behaviors
(e.g. driving in a lane, turning right in an intersection), while
the inputs labelling transitions capture events generated by
the environment (e.g., traffic light turning green, parking spot
being detected on the side of the road) or decisions made
by the robot. The topology of the environment is captured
by an environment transition system TE . The states of TE
are features of interest in the environment, such as roads,
intersections, and parking spaces. The inputs labelling the
transitions of TE are the same as the inputs of TR. All
possible motions of a robot in the environment will be given
by the synchronous product TR ‖ TE . In this transition
system , we will find a “short” satisfying run (Sec. II), project
it to a run of TR, and then implement this run as a control
strategy for the robot.

IV. ROBOT AND ENVIRONMENT MODELS

A. Robot Transition System

The robot transition system TR = (QR, Q0R,Σ,→R

,ΠR,�R) is shown in Fig. 3. The ovals are the states QR,
the arrows and their labels are the set of transitions →R and
the set of events Σ, the observations ΠR are shown close to
the states with which they relate according to the satisfaction
relation �R. The initial states Q0R are marked by incoming
arrows with no labels.



Fig. 1. Robotic Urban-Like Environment (RULE). Left: Khepera III car-like robots move autonomously on streets while staying in their lanes, observing
traffic rules, and avoiding collisions. Right: A car waiting at a traffic light.

I2

I4 I3

I1 R2R3

R1

R6

R4R5

R7R8

R9

P1P3 P2P4

P6

P5

P9 P8 P7

P10

at_int

r_light, g_light

at_park, on_road
on_road

in_park Initial Final

(a) (b)
Fig. 2. (a) A schematic representation of the city environment from Fig 1 showing the observations and the location of some environmental events; (b)
Snapshots from a movie produced with our simulator showing a robot executing the motion R1I2R5I4R8I3R7I3R8I4R5I2R3I1R2I1R3(P2) satisfying
the specification “Visit R7, and then park at P2 and stay there; always avoid R4”, or ♦(R7 ∧ ♦�P2) ∧�¬R4.

Each state models a behavior or a collection of related
robot behaviors where each is implemented as a low-level
feedback controller. There is a transition from a robot
state to another once an event (input) is triggered by the
environment or the robot itself. For instance, in state Drive,
the robot moves at constant speed in a lane while looking
for intersections and parking spaces (Sec. VI-A). When an
intersection or a parking space is found, the event at int or
at park is generated, and the robot transits to the next state.

The robot is initiated either in Parking Wait or Drive. If
the robot is driving on a street and reaches an intersection,
the event at int is triggered, which forces the robot to transfer
to the Intersection Wait state. Here the robot checks for the
intersection signal light color. If it is red (r light), the robot
stays in the same state and continues to check the color of
the signal light. Once the light turns green (g light), the robot
decides which way to go (go left, go right, or go straight.)
For more details on the robot’s actions such as parking, see
its transition system graph (Fig. 3).

For the case when the robot gets dangerously close to
an obstacle or to another robot, each robot state is paired
with a Wait state, which halts the robot and prevents it
from moving. The transition to this state is enabled by the

event hazard, which is triggered by close proximity to an
object. The transition back to the original state is enabled by
no hazard, which is generated when the space near the robot
is cleared. For simplicity, these extra states are not shown in
Fig. 3.

The states of TR are put in relation with observations
from the set ΠR = {DR,DI,PA,WI}, with the following
significance: DR = “Drive on a Road”, DI = “Drive through
an Intersection”, PA = “involved in PArking”, and WI =
“Wait at an Intersection”. These observations are high-level
descriptions of the robot behavior. In our current setup, they
are not used for motion specification and control. Rather,
they are used to check the correctness of the solution. For
example, over the set of all possible robot motions in the
environment, we want to make sure that the robot is not
involved into a parking maneuver (PA) while passing through
an intersection (Sec. V).

B. Environment Transition System

For any urban environment satisfying the assumptions
enumerated at the beginning of Sec. III, an environment
transition system TE = (QE , Q0E ,Σ,→E ,ΠE ,�E) can be
constructed by interconnecting the three modules shown in



Go
Straight

Intersection
Wait

Intersection
Decision

Drive

Turn
Left

Park

Turn 
Right

Parking 
Decision

r_
lig

ht

at
_i

nt
g_

lig
ht

go
_s

tr
ai

gh
t

go
_ri

gh
t

on
_ro

ad

go_left

on_road

on_roadat_park
no_park

do
_p

ar
k

on_road

Unpark

out_parking

Parking 
Wait

in_park

stay_parked

PA

PA

PADR

WIDI DI

DI

WI

DR

Fig. 3. The robot transition system (TR). The states label robot behaviors
(e.g., Drive, Park). The transitions are enabled by inputs that can be
robot decisions (e.g., go left) or environmental events (e.g., at int). The
observations (e.g., DR = “Drive on a road”, DI = “Drive through an
intersection”) are high-level descriptions of the robot behavior.

Figs. 4 and 5. The connections are made along transitions
marked with · · · by matching the name of the events on the
transitions. There are three types of observations in ΠE : road
labels Rn from the set R, intersection labels Ii from the set
I, and parking space labels Pk from the set P . Note that the
motion specification in Problem 1 is given over these sets.

Any road Rn, connecting exactly two intersections Ii and
Ij, can have an arbitrary number of parking spaces. A road
Rn with no parking spaces connecting intersections Ii and
Ij generates a (part of a) transition system obtained by
connecting Module 1 at the right of Module 2, where in
Module 2 the incoming transition labelled no park in state
Int Prep is removed. For a road Rn spanning between
intersections Ii and Ij with one parking space Pk, one Module
3 is inserted between a Module 1 and a Module 2, where
the incoming transition labelled by no park in Park Prep
is removed. To insert an additional parking space, another
Module 3 is inserted at the left of the previous Module 3,
following the connection rule defined above. The last parking
space (Module 3) is then connected to Module 2 to complete
the construction of the road.

State Int End in Module 1 corresponds to a region in the
environment at the end of intersection Ii, and is therefore
labelled with observation Ii. In this state, the robot can read
the event on road, denoting that it is out of the intersection
and on road Rn (Fig. 2 (a)). State Int Prep in Module 2
corresponds to the portion of road Rn where no parking
spaces can be found any more, and the robot is looking for

the beginning of an intersection, which is signalled by the
event at int (e.g., the entrance from R5 to I2 in Fig. 2 (a)).
The rest of the states in Module 2 are self explanatory.

Note that the intersections at the end of a road can be
the same (i.e., i=j in Fig. 4). By connecting road segments
on their end transitions such that the labels match, any city
satisfying the restrictions stated at the beginning of Sec. III
can be constructed. For more details on TE states and events,
see Figs. 4 and 5.

V. GENERATION OF A ROBOT CONTROL STRATEGY

The synchronous product T = TR ‖ TE = (Q,Q0,Σ,→
,Π,�) captures all possible motions of a robot in the city.
This is achieved through synchronization on common events
and through pruning unreachable states in the product (Defn.
2). A state (qR, qE) in T gives “complete” information
about the robot behavior (qR) and about its location in the
environment (qE). As already suggested, this information is,
in general, too detailed, as some states in TE were artificially
introduced for synchronization purposes only. A coarser
description is the corresponding observation {πR, πE}. Ac-
cording to our definitions from Sec. IV-B and IV-A, πE
specifies on which road, intersection, or parking space the
robot is located, while πR indicates if the robot is driving
on a road, passing through an intersection, or maneuvering
or waiting in a parking space.

As stated in Problem 1, a task is specified as an LTL
formula φ over ΠE = R∪I∪P . This is also an LTL formula
over Π = ΠR∪ΠE . By using the procedure described at the
end of Sec. II, we find a run in T of minimal overall length,
where the overall length is defined as the sum of the lengths
of the prefix and suffix. The projection of this run of T
along TE gives the motion of the robot in the environment.
The projection along TR (which is deterministic) gives the
robot control strategy. Therefore, as an infinite run of TR, the
robot control strategy is a sequence of robot behaviors (states
from QR), where the transitions between the behaviors are
triggered by events read from the environment while the
robot moves (e.g., on road, at park) or by robot decisions
(e.g., go left).

In the rest of this section, we discuss the issues of
completeness (i.e., whether a solution can be found when one
exists) and correctness (i.e., whether the solution corresponds
to a safe and deadlock-free motion of the robot in the
environment) of our approach to Problem 1. Intuitively,
both these issues are addressed through the construction
of TR and TE and through the use of the synchronous
product from Def. 2. Indeed, TR captures the motion and
sensing capabilities of our robot, and only allows for correct
transitions between the behaviors. TE captures the topology
of the environment, and transitions are only allowed between
adjacent regions and under events that can be generated
locally in the corresponding regions. In the synchronous
product, the robot and the environment synchronize on such
events, and the pairs of the states that are not reachable from
the initial states are eliminated.



Int Start 
Traffic 
Light

at_int

r_light

g_light

go_right

go_straight

go
_le
ft

…

RnIj
…

…

Int Prep
on_road

no_park

…

Rn

…

Module 2

Int End
go_straight

go_left

go
_r
ig
ht

on_road …

Ii

…

…

Module 1

…

Fig. 4. Modules 1 and 2 necessary for the construction of roads and intersections in the environment transition system TE

Even though this construction seems to lead to complete
and correct solutions, automatic verification can prove useful,
especially since the size of TE can become large for “com-
plicated” urban environments, and errors in coding and rep-
resentations of TE and T are possible. This can be achieved
through off-the-shelf LTL model checking (Sec. II), where
the formulas combine robot and environment observations.
First, in accordance with the restrictions formulated at the
beginning of Sec. III and the allowed modules shown in Figs.
4 and 5, we need to make sure that an intersection is always
followed by a road and a parking space can only occur on
a road. These requirements translate to the LTL formula
©(∨Rn), which must be true at all states with observations
Ii or Pk in TE , for all Ii ∈ I and Pk ∈ P . Second, we
want to make sure that, in the synchronous product T , robot
behaviors are correctly paired with regions in the city. Using
the robot observations from Fig. 3, this translates to the
set of purely logical formulas DR ⇒

∨
Rn, DI ⇒

∨
Ii,

and PA ⇒
∨

Pk. We performed these checks to verify our
implementation for the environment shown in Fig. 2. It is
important to note that these correctness checks are only for
the models and the software implementation described here,
and are valid under the assumptions that the robot does not
break (its motors and sensors function properly), and that the
events are “well behaved” in the sense that the robot reads
events such as on road and at park correctly, each traffic
light eventually turns green (event g light occurs infinitely
often) and the hazard event is eventually reset if it ever
occurs. Such assumptions also translate to LTL formulas (not
shown here due to space constraints), which can be used to
augment the correctness formulas enumerated above. More
thorough verification can be achieved by augmenting the set
of observations of TR and TE .

By using the framework described above, several robots
can be deployed at the same time in the same environment
(Sec. VI-B). The traffic lights solve possible conflicts in
intersections, while the Wait - hazard mechanism takes care
of situations in which two robots are too close.

VI. EXPERIMENTAL SETUP AND RESULTS

A. RULE Setup

Our Robotic Urban-Like Environment (RULE) is a 8’ ×
11’ surface with two-way streets, traffic lights, and parking
spaces (Fig. 1). The cars are Khepera III robots equipped
with KorebotLE extensions. A desktop computer is used to

Park Start

Parking Spot

no_park

out_parking

do_park

at_park

stay_parked

Park End

in_park

on_road…

RnRn

Pk

… Park Prep

on
_r
oa
d

Rn

…

no_park

…

Module 3

Fig. 5. Module 3 of TE necessary for insertion of parking spaces on roads

control the traffic lights and to process the images captured
with four overhead cameras. For more information on RULE
setup, see the project web site (http://iasi.bu.edu/
rule/).

The city is easily reconfigurable. The lanes of the roads
are marked with tape (yellow for road sides and red for
middle line, the posts of the traffic lights can be screwed
in several predefined positions, and the parking spots can be
easily relocated by simply moving the corresponding blue
boxes (Fig. 1). The environment events at int and at park
are implemented by using white tape of different widths on
the road. While driving on a road, the robot continuously
looks for the beginning of a white region using its bottom
infrared sensors. When such a portion is found, the robot
uses odometry to measure the width of the region (which
is accurate enough for this task), and therefore distinguish
between at int and at park. The event r light (red color at a
traffic light) is generated by an IR emitter LED, which can be
read by the robot’s IR proximity sensors when the robot is at
the traffic light. The robot uses its bottom IR sensors to stay
in a lane and to find a lane (event on road) by following and,
respectively, finding a transparent tape glued in the middle of
the lane (Fig. 1). Finally, the robot uses its proximity sensors
to detect the back wall of a parking space, when the event
in park is generated.

In RULE, robot deployment is achieved through a user-
friendly graphical interface. The image of the city obtained
from four overhead cameras is converted into a schematic
representation, such as the one from Fig. 2. Labels are
automatically generated for roads, intersections, and parking
spaces and presented to the user, who can specify a task as an
arbitrary LTL formula over these labels. The desktop com-
puter performs all the computation (generation of the Büchi

http://iasi.bu.edu/rule/
http://iasi.bu.edu/rule/


automaton, construction of the synchronous product, con-
struction of the product automaton between the synchronous
product and the Büchi automaton, and the generation of
the robot control strategy), and sends the control strategy
to the robots through Wi-Fi. Then, the robots execute the
task autonomously by interacting with the environment. The
user has the option to simulate the run (Fig. 2 (b)) before
trying it on the actual platform.

B. Experimental Results

Consider the RULE setup shown schematically in Fig. 2
and the following two motion specifications:

Spec. 1: “Visit Road R1 and then Road R9 infinitely
often. If Road R8 is ever visited, then Road R3 must never
be reached.”

Spec. 2: “Visit Road R7 and then Road R5 infinitely
often.”

Specifications 1 and 2 translate immediately to the LTL
formulas φ1 and φ2 below, respectively:

φ1 : �♦(R1 ∧ ♦R9) ∧�(R8 → ¬♦R3) (1)
φ2 : �♦(R7 ∧ ♦R5) (2)

Using the computational framework proposed in this pa-
per, we find robot control strategies for each specification.
For Spec. 1 and initial state R2 in TE , the resulting robot
motion, which is a run in the environment transition system
TE , is the following:

R2I1R3(I2R1I2R5I4R8I3R9I3R8I4R6) (3)

Spec. 2 with initial state R6 for TE leads to the following
motion:

R6I2(R3I1R4I3R7I3R8I4R5I2) (4)

In Eqns. (3) and (4), the parts of the runs between
parenthesis represent the suffixes, and are therefore repeated
infinitely. It should be noted that Spec. 1 does not require
R1 to be visited right after R9. Similarly, Spec. 2 does
not enforce visiting R5 immediately after R7. Thus, the
produced runs are acceptable even though many roads and
intersections are visited between R1 and R9 and between R7

and R5 in Eqns. (3) and (4) respectively. Movies showing
the actual runs can be downloaded from the RULE web site
(http://iasi.bu.edu/rule/).

The approach we propose here is computationally ex-
pensive. The amount of computation scales exponentially
with the length of the specification formula. However, this
theoretical upper bound is almost never achieved in practice.
For example, in the case studies shown above, the robot
and environment transition systems have 10 and 46 states
respectively, and the computation of the runs takes less than
a second on a regular desktop computer.

VII. CONCLUSIONS AND FUTURE WORK

We presented a computational framework and experimen-
tal setup for deployment of autonomous cars in a Robotic
Urban-Like Environment (RULE). We use transition systems
to model the motion and sensing capabilities of the robots

and the topology of the environment, formulas of Linear
Temporal Logic (LTL) to allow for rich specifications, and
tools resembling model checking to generate robot control
strategies and to verify the correctness of the solution. The
experimental setup is based on Khepera III robots, which
move autonomously on streets while observing traffic rules.

As future work, we plan to accommodate changing envi-
ronments and unexpected malfunctions in the environment by
reformulating the problem as a game, where nondeterminism
is treated as an adversary, as suggested in our previous
work [15]. We will also investigate automatic generation
of distributed robot control and communication strategies
from global (robot-abstract) specifications about features of
interest in the environment.

VIII. ACKNOWLEDGEMENTS

We would like to thank Ben Heng, Greg Vulkih, and
Boyan Yordanov (Boston University) for their help with the
construction of the platform and software implementation,
Kim Wheeler (Road Narrows) for assisting with Khepera-
related problems, and Thomas Lochmatter (EPFL) for his
help with coding the KorebotLE.

REFERENCES

[1] E. M. Clarke, D. Peled, and O. Grumberg, Model checking. MIT
Press, 1999.

[2] J. Davoren, V. Coulthard, N. Markey, and T. Moor, “Non-deterministic
temporal logics for general flow systems,” in HSCC: 7th International
Workshop, 2004, pp. 280–295.

[3] P. Tabuada and G. Pappas, “Model checking LTL over controllable
linear systems is decidable,” ser. Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds. Springer, 2003, vol. 2623.

[4] M. Kloetzer and C. Belta, “A fully automated framework for control of
linear systems from temporal logic specifications,” IEEE Transactions
on Automatic Control, vol. 53, no. 1, pp. 287–297, 2008.

[5] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multiagent motion tasks based on LTL specifications,” in 43rd IEEE
Conference on Decision and Control, 2004.

[6] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Hybrid controllers
for path planning: a temporal logic approach,” in Proceedings of the
2005 IEEE Conference on Decision and Control, 2005.

[7] H. Kress-Gazit, D. Conner, H. Choset, A. Rizzi, and G. Pappas,
“Courteous cars,” IEEE Robotics and Automation Magazine, vol. 15,
pp. 30–38, March 2008.

[8] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas, “Discrete
abstractions of hybrid systems,” Proceedings of the IEEE, vol. 88, pp.
971–984, 2000.

[9] (2007) 2007 darpa urban challenge. [Online]. Available: http:
//www.darpa.mil/GRANDCHALLENGE/

[10] A. Arnold, Finite transition systems: semantics of communicating
systems. Prentice Hall, 2007.

[11] N. Piterman, A. Pnueli, and Y. Saar, “Synthesis of reactive(1) designs,”
in VMCAI, Charleston, SC, 2006, pp. 364–380.

[12] C. Belta and L. Habets, “Control of a class of nonlinear systems on
rectangles,” IEEE Transactions on Automatic Control, vol. 51, no. 11,
pp. 1749 – 1759, 2006.

[13] M. Mukund, “From global specifications to distributed implementa-
tions,” in Synthesis and control of discrete event systems. Kluwer,
2002, pp. 19–34.

[14] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking,” in Proc. Interna-
tional Conference on Computer-Aided Verification (CAV 2002), ser.
LNCS, vol. 2404. Copenhagen, Denmark: Springer, July 2002.

[15] M.Kloetzer and C. Belta, “Dealing with non-determinism in symbolic
control,” in Hybrid Systems: Computation and Control: 11th Interna-
tional Workshop, ser. Lecture Notes in Computer Science, M. Egerstedt
and B. Mishra, Eds. Springer Berlin / Heidelberg, 2008, pp. 287–300.

http://iasi.bu.edu/rule/
http://www.darpa.mil/GRANDCHALLENGE/
http://www.darpa.mil/GRANDCHALLENGE/

	Introduction
	Preliminaries
	Problem Formulation and Approach
	Robot and Environment Models
	Robot Transition System
	Environment Transition System

	Generation of a Robot Control Strategy
	Experimental Setup and Results
	RULE Setup
	Experimental Results

	Conclusions and Future Work
	Acknowledgements
	References

