
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018 1

Automated Abstraction of Manipulation Domains
for Cost-Based Reactive Synthesis

Keliang He1, Morteza Lahijanian2, Lydia E. Kavraki1, and Moshe Y. Vardi1

Abstract—When robotic manipulators perform high-level tasks
in the presence of another agent, e.g., a human, they must
have a strategy that considers possible interferences in order
to guarantee task completion and efficient resource usage. One
approach to generate such strategies is called reactive synthesis.
Reactive synthesis requires an abstraction, which is a discrete
structure that captures the domain in which the robot and
other agents operate. Existing works discuss the construction
of abstractions for mobile robots through space decomposition;
however, they cannot be applied to manipulation domains due to
the curse of dimensionality caused by the manipulator and the
objects. In this work, we present the first algorithm for automatic
abstraction construction for reactive synthesis of manipulation
tasks. We focus on tasks that involve picking and placing objects
with possible extensions to other types of actions. The abstraction
also provides an upper bound on path-based costs for robot
actions. We combine this abstraction algorithm with our reactive
synthesis planner to construct correct-by-construction plans. We
demonstrate the power of the framework on a UR5 robot,
completing complex tasks in face of interferences by a human.

Index Terms—Formal Methods in Robotics and Automation,
Manipulation Planning, Motion and Path Planning

I. INTRODUCTION

ROBOTIC manipulators no longer need to be confined in
cages. Recent developments have enabled robots to safely

operate in shared workspaces alongside humans, expanding
their applications to assistive and service robots, e.g., in
assembly lines that are shared with humans, in restaurants,
and at homes. In such scenarios, manipulators need to interact
with a dynamic world and perform complex tasks in face of
possible interferences by humans. This poses a challenge from
the planning perspective because traditional algorithms that
produce plans with fixed sequences of motions can no longer
be employed. Instead, the robot must have a strategy that is
reactive, i.e., performing motions to respond to the changes
caused by humans or other agents.

Consider a scenario where a manufacturing robot that works
alongside a human needs to perform a complex assembly task
that may be expressed in a high-level language. A trained
human may want to participate and help the robot achieve the

Manuscript received: August, 14, 2018; Revised November, 11, 2018;
Accepted December, 4, 2018.

This paper was recommended for publication by Editor Dezhen Song upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by NSF IIS, 1317849 NSF 1830549 and Rice University Funds.

1K. He, L. Kavraki, M. Vardi are with the Dept. of Computer Sci-
ence, Rice University, Houston, TX, USA. keliang.h@gmail.com,
kavraki@rice.edu, vardi@cs.rice.edu.

2M. Lahijanian is with the Dept. of Smead Aerospace
Engineering Sciences, University of Colorado Boulder, CO, USA
morteza.lahijanian@colorado.edu.

Digital Object Identifier (DOI): see top of this page.

Fig. 1: The arch problem.

task faster, or an untrained human may unknowingly interfere
with the task by displacing assembly parts. Fig. 1 shows an
in-lab example of this scenario, where an arch needs to be
constructed with the white blocks as the base columns and
the black block at the top. During task execution, a human
may interfere and mistakenly place the black block as the base
column or displace a column. Assuming a finite number of
such interferences, the robot must complete the task within
a given amount of energy. In this paper, we focus on such a
reactive planning problem for manipulators and seek strategies
that guarantee task completion.

Reactive synthesis, a class of algorithms for finding reactive
strategies, has been well studied in the field of program
verification and synthesis [1]. Several works have applied
reactive synthesis for strategy generation in mobile robotics
[2]–[4]. Those works focus on infinite-horizon tasks expressed
as linear temporal logic (LTL) [5] formulas, and assume finite,
discrete structures that represent the continuous motions of the
robot in the environment called abstractions. Given an LTL
formula and an abstraction, the reactive planning algorithms
construct a discrete game between the robot and the human
and then compute a winning strategy, which guarantees to
win the game by choosing an appropriate action for the robot
in response to every action of the human. To enable reactive
planning for manipulators, a similar game-based technique has
been developed for robots with finite tasks and cost constraints
[6]. That work assumes the existence of a discrete abstraction
of the robotic manipulator. In general, the correct mapping
of the discrete winning strategies to the continuous domain
depends on the guarantees of the abstraction both for mobile
robots and for manipulators. However, the construction of such
an abstraction for continuous high-dimensional systems, such
as manipulators, in a changing environment is non-trivial.

In this work, we introduce a novel algorithm for manipulation
abstraction construction for reactive planning. The focus is on
pick-and-place types of tasks with possible extensions to other
actions such as pushing and pulling. The proposed abstraction
preserves a simulation relation between the continuous and

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

discrete planning domains, hence guaranteeing the correctness
of mapping the synthesized strategies to the continuous domain.
In this abstraction, a discretization of the continuous domain is
achieved by grouping states according to the locations of the
objects. Transitions between states are captured by two sets
of actions: robot actions and human actions. The feasibility
of the robot actions is checked to ensure validity. In addition,
to reason about resource consumption over strategies by the
discrete reactive planner, approximations for the resource cost
of robot actions are included in the abstraction. Two algorithms
are proposed for the offline computation of feasibility and cost
of robot actions. One enables fast computation, while the other
provides better approximations. With this abstraction, we can
map strategies for the discrete reactive synthesis problem to
the continuous domain with correctness guarantees.

The main contribution of this work is an automated technique
for abstraction of the manipulation domain for reactive synthe-
sis problems. This is the first fully-automated abstraction tech-
nique for manipulation planning to the best of our knowledge.
This work allows us to study reactive synthesis in the context of
manipulation and understand its advantages and disadvantages.
It also supports human-robot collaborative environments and
paves the path for formal reasoning for such interactions.
Another contribution of the paper is the formalization of the
necessary simulation conditions for manipulation abstractions
in order to preserve correctness of reactive synthesis. We show
that such conditions are indeed satisfied with our abstraction
technique. Our abstraction algorithm is incorporated within
an end-to-end reactive planner. The efficacy of this planner
is demonstrated on a UR5 robot for complex pick-and-place
tasks in the presence of a human who interferes with the task.

II. RELATED WORK

Reactive synthesis has been widely used for finding strategies
for mobile robots [2]–[4]. Recent works examined the extension
of these techniques to the manipulation domain [6], [7]. In all
of these works, an abstraction is required to map the continuous
physical world to a discrete domain. This abstraction needs to
maintain a simulation relation [2] with the continuous domain,
i.e., there must be a mapping between the states and actions of
the abstraction with the states and actions of the physical world.
However, the construction of this abstraction is a challenging
problem itself [6], [7].

Many recent studies have focused on the construction of
such abstractions for robotic systems. Works in synthesis for
the manipulation domain have used discrete graphs to capture
the reachability of the objects by the robot [6]–[8]. These
abstraction graphs, however, are mostly hand designed for
particular scenarios, and their simulation relation guarantees
to the continuous physical domain are not formally studied.

To assist manual construction of abstractions for mobile
robots, [9] proposes a method where a graphical interface
allows a user to perform an appropriate decomposition of
the workspace in addition to specifying the task regions, and
then a tool constructs the abstraction from this decomposition.
Another study [10] proposes algorithms for providing feedback
to the human on potential error in hand-made abstractions
when synthesis cannot be done. These works do not scale to

manipulators and highlight the difficulty in construction of
appropriate abstractions. Furthermore, manual construction of
abstractions is generally cumbersome and error-prone.

Works on automated construction [11]–[14] focus on mobile
robots with dynamics, where tasks are defined over the locations
of the robot in the workspace. These techniques rely on a 2-
or 3-dimensional decomposition of the workspace and build
controllers to enable navigation between neighboring regions.
These approaches, however, cannot be extended to the manip-
ulation domain. Manipulation tasks are defined over object
locations, which can only be changed indirectly through the
robot end-effector. Therefore, a workspace decomposition does
not capture the possible actions of the domain. Additionally,
it is impossible to determine the existence of robot motion
between regions of the workspace without motion planning
since objects blocking relations are difficult to compute for
manipulators due their high DoF.

Besides reactive synthesis, another approach for handling
interferences is replanning. This line of work is orthogonal to
the work presented in this paper because, instead of seeking
for a reactive strategy, fixed plans are repeatedly generated to
deal with the changes in the environment. For mobile robots,
replanning for complex tasks has been introduced in [15], [16].
For manipulation, online replanning is also possible for simple
A-to-B tasks [17], [18]. For complex tasks, however, replanning
may take too long during task execution [19]. More importantly,
unlike reactive planning, replanning approaches cannot provide
guarantees for the completion of the task.

For example, a robot that needs to choose one of two places
to temporarily place an object before picking it up again later.
One is on a table far away. The other is in a shelf that is
closer, but the human may close the shelf door and prevent the
robot from reaching the object. Reactive synthesis will place
the object on the table to ensure the object can be reached later.
Replanning will place the object in the shelf, as it produces
an efficient plan. However, if the human closes the shelf door,
the task can no longer be completed.

III. THE REACTIVE SYNTHESIS PROBLEM

Reactive synthesis considers the problem of finding an
execution strategy to achieve the specified task constraints
under all allowed interferences by another agent. The input
to this problem contains four main components: the domain,
the task, the resource cost bound, and the number of allowed
actions by the other agent. The solution is a strategy that
dictates an action to the robot at every instance of time.
A. Manipulation Domain
Definition 1 (Manipulation Domain). For a set of movable
objects O, the manipulation domain is a transition system
D = (C,c0,Us,Ue,FD,Π,ρD), where
• C = CR×CO is the combined continuous configuration

space of the robot CR and the objects CO.
• c0 ∈C is the initial configuration.
• Us ⊂ {us|us : C→ C} is the set of robot actions, which

are partial functions from one configuration to another.
• Ue⊂{ue|ue : C→C} is a set of allowed actions from other

agents, which are partial functions from one configuration
to another.

HE et al.: AUTOMATED ABSTRACTION OF MANIPULATION DOMAINS FOR COST-BASED REACTIVE SYNTHESIS 3

• FD : C×Us→R≥0∪{∞} is a cost function that determines
the resource needed to perform actions. If us is undefined
from c, then FD(c,us) = ∞.

• Π is a set of propositions that relate to the task.
• ρD : C→ 2Π is the predicate function that determines the

truth value of propositions in Π from the configuration.

For the 6-DoF UR5 robot in Fig. 1, the configuration space
of the robot is CR =R6. The set of movable objects O includes
the blocks in the figure, each with configuration space SE(3).
These combine for C = R6× (SE(3))3.

We assume the set of robot actions can be partitioned into two
types: Us =Umot

s ∪Upri
s . Umot

s are actions that require motion
planning. Upri

s are given as motion primitives. In this paper, we
consider pick-and-place domains with Upri

s = {GRASP, PLACE},
corresponding to grasping and placing of objects. These
motion primitives are given with pre- and post-images relative
to the object. A pre-image of GRASP (PLACE) is a set of
configurations relative to an object, from which the robot can
grasp (place) the object using the primitive GRASP (PLACE).
The post-image is the final configuration after executing the
motion primitive. Note that Upri

s can be extended to other types
of motion, e.g., push and pull.

An action in Ue is considered as an instantaneous movement
of an object caused by the other agent (human). The function
FD maps actions to resource cost. In the arch example, we
assume that motion primitives use 5 units of resources, while
moving the robot arm with Umot

s uses 1 unit of resources
per radian of movement. We call L = {l1, l2, . . . , l|L|}, where
li ⊂CO, a set of locations (configurations) of interest for the
objects. In the arch example, L includes the supports and the
top of the arch as well as two locations on the table to place
the objects temporarily. ρD relates configurations to the task
propositions by determining whether objects are at locations in
L. Π includes propositions of the form po,l , indicating whether
object o ∈O is in location l ∈ L. In the arch example pblack,top
indicates whether the black block is at the top.

B. Finite-Horizon Robot Task

To express the task, we use LTL over finite traces (LTLf) [20].
An LTLf formula ϕ combines boolean operators, i.e., ∧ (“and”),
¬ (“not”), and → (“implies”), with temporal operators, i.e., ♦
(“eventually”) and � (“always”), over a set of propositions Π

to describe how the propositions change over time. For syntax
and semantics of LTLf, see [20]. In this paper, we accompany
the task formula with a text explanation. For the arch example
in Fig. 1, the LTLf formula is

ϕArch = ♦
(

pblack,top∧ pwhite,support1 ∧ pwhite,support2

)
∧

�
(
¬(pblock,support1 ∧ pblock,support2)→¬pblock,top

)
,

(1)

which reads as “eventually the black block is on top with white
blocks at the supports, and never place a block on top without
objects at the supports.”

C. Resource Cost and Action Bounds

The resource cost limit is given as a positive real number E.
We assume that the other agent (human) takes at most k ∈ N
number of actions from Ue. This assumption is necessary

because a robot with limited resources cannot guarantee
completion of the task if the other agent is allowed an
unbounded number of actions.

D. Strategy

During an execution, the robot performs actions from Us to
progress toward task completion, while the other agent may
perform actions from Ue at any time. A trajectory ht : [0, t]→C
is an execution in D up to time t. We denote the set of all such
trajectories by Ht . For an ht , the trace ρD ◦hT is the sequence
of assignments to propositions in Π along ht .

A strategy P : Ht→Us determines the next action us ∈Us for
the robot to apply given the current ht . For a given manipulation
domain D, an LTLf task ϕ , a resource cost bound E, and action
bound k, a winning strategy is a strategy that if followed and
the other agent takes at most k actions from Ue, then there
always exists a time T when the trace ρD ◦hT satisfies ϕ , and
the total resource used determined by FD does not exceed E.

E. Manipulation Reactive Synthesis Problem

Problem 1 (Manipulation Reactive Synthesis). Given a ma-
nipulation domain D, a task ϕ , a resource cost bound E, and
a bound k on the number of actions of the other agent, find a
winning strategy for the robot.

F. Abstraction

The manipulation domain has an infinite state space. Existing
techniques for reactive synthesis, however, work only on finite
state spaces. We reduce the manipulation domain to a finite,
discrete domain called the abstraction by grouping similar
states into a single discrete state.

Definition 2 (Abstraction). An abstraction is a discrete
transition system G = (V,v0,As,Ae,F,Π,ρ), where
• V is a finite set of states.
• v0 is the initial state.
• As ⊂ {as|as : V → V} is the set of robot actions, which

are partial functions from states to states.
• Ae ⊂ {ae|ae : V →V} is a set of allowed human actions,

which are partial functions from states to states.
• F : V ×As→R≥0∪{∞} is a cost function that determines

the resource needed to perform actions. If an action as is
invalid from a state v, then F(v,as) = ∞.

• Π is a set of task-related propositions.
• ρ : V → 2Π is the predicate function that determines the

truth values of the propositions in Π from the states.

On this discrete abstraction, a strategy takes as input a
sequence of abstraction states and outputs an action from As.
A strategy is winning for a task ϕ , resource cost bound E,
and action bound k if every execution that follows the strategy
results in task completion using resources no more than E, as
long as the other agent takes no more than k actions.

G. Abstraction Construction Problem

Problem 2 (Abstraction Construction). Given a manipulation
domain D, find an abstraction G with mapping γ from the
states of D to the states of G such that for any task ϕ , resource

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

cost bound E, and bound k on the other agent’s actions, if
there is a winning strategy for G, then there is a winning
strategy for D.

The focus of this paper is a methodology for abstraction
construction that solves Problem 2. This construction is
presented in Sec. IV. In Sec. V, we show how this abstraction is
used in an end-to-end framework to solve the reactive synthesis
Problem 1. The correctness of the end-to-end framework is
also proven in Sec. V. For simplicity, we refer to the other
agent as the human in the reminder of the paper.

IV. ABSTRACTION CONSTRUCTION

In this section, we describe an automated method for
constructing an abstraction G from domain D given the
locations of interest L and the objects O. The abstraction
construction procedure is shown in Algorithm 1, which first
generates the discrete state space (Sec. IV-A) and the actions
of the abstraction (Sec. IV-B). It then constructs a set of states
Else to represent the portion of D that is not task-relevant and
uses it to find a costmap M that describes the connectivity
of the various locations. We bind this costmap to generate the
resource cost function F (Sec. IV-C).

A. Abstraction States

This subsection corresponds to line 2 in Algorithm 1. We
group states according to the location of the objects O in
relation to the poses of the locations of interest L. Note that
since the human is allowed to move objects, an object may be
in none of the locations of interest.

We define a state v ∈ V in the abstraction to be a tuple
v = (L1,L2, ...,Ln,Lee), where Li is the discrete location of
the ith object, and Lee is the discrete location of the manipulator
end-effector.

Li can take on the following values:
• l j ∈ L, indicating that the object is placed at the jth pose

in the set of locations of interest,
• Else, indicating that the object placed at a location that

is not at any of the poses in L,
• ee, indicating that the object is in the end-effector.
The assignment Else signifies the object is at a pose

other than a location of interest. This is grouped as a single
assignment of Li because the exact location of an object in
Else is not crucial to the task.

Lee can take on the following values:
• l j ∈ L, indicating that the end-effector is such that the

object it is interacting with is aligned with the jth pose
in the set of locations of interest,

• {o,a}, where o ∈ O and a ∈ As, indicating that the end-
effector is within the pre-image of the primitive action a
relative to the object o,

• Else, indicating none of the above is true.
The values of Lee signifies that the robot configuration is

within the pre-image of a primitive action. For pick-and-place
domains, l j indicates the robot configuration is in the pre-image
of PLACE. {o,a} indicates the robot configuration is in the
pre-image of the primitive GRASP action for object o using
grasp method a.

Algorithm 1 Abstraction Construction Procedure

1: procedure CONSTRUCTABSTRACTION(D,L,O)
2: (V,v0,ρ)← CONSTRUCTSTATESPACE(D,L,O)
3: (As,Ae)← CONSTRUCTACTIONS(|L|, |O|)
4: Else← SAMPLECONFIGURATIONS()
5: M ← CONSTRUCTCOSTMAP(L∪Else,O)
6: F ← Bind GETCOST() with M
7: return D = (V,v0,As,Ae,F,Π,ρ)

The initial state v0 is found by mapping the initial domain
state c0 to the abstraction. The set of propositions Π is the
same as the set of propositions in the manipulation domain.
The predicate function ρ is determined by the location of the
objects with respect to L.

Note that not all state tuples are physically feasible. In
particular, we remove all states where multiple objects are
assigned the same location value. Lee is only allowed to take
on values from {o,a} if there is no object in the end-effector,
and to take on values from L if there is an object in the end-
effector. We define the set V to be the set of tuples v that do
not violate any of the rules above.

Lemma 3. There is a mapping γ from the set of configurations
in the manipulation domain C =CR×CO to the states of the
abstraction V that preserves the predicate function ρ(γ(c)) =
ρD(c),∀c ∈C.

Proof. For any given configuration c ∈ CR×CO, γ maps c
to the abstraction state v = (L1,L2, ...,Ln,Lee), where Li
is determined by the projection of c onto the components
that relate to object COi , and Lee is determined by forward
kinematics on the robot component of c onto CR. Since each
location relevant to the predicate function of the manipulation
domain is a location of interest for the abstraction, ρ is naturally
preserved.

B. Human and Robot Actions
This subsection corresponds to line 3 in Algorithm 1. We

define the human actions Ae as {ae,o,t |o ∈ O, t ∈ L∪{Else}}.
Intuitively, ae,o,t is the human action of moving object o to
target t. The location is either a location of interest L or Else.

Lemma 4. The abstraction G = (V,v0,As,Ae,F,Π,ρ) simu-
lates the manipulation domain D = (C,c0,Us,Ue,FD,Π,ρD)
with respect to the human actions under the mapping γ , i.e.,
for every c1,c2 ∈C and ue ∈Ue such that ue(c1) = c2, there
exists ae ∈ Ae such that ae(γ(c1)) = γ(c2).

Proof. The manipulation domain has human actions that
instantaneously move objects around. Since this only affects
one object location, the corresponding state in the abstraction
only changes one value. In G, Ae captures all such possibilities
of moving a single object on a discrete level.

We define the robot actions As as {Grab} ∪ {Drop} ∪
{Transito,a}∪{Transferl}, where:
• Grab corresponds to GRASP. This sets Lo to ee, and Lee

takes the previous value of Lo,
• Drop corresponds to PLACE. This sets Lee to be aligned

with the object o at the previous grasp a, and Lo becomes
the previous location of the end-effector l,

HE et al.: AUTOMATED ABSTRACTION OF MANIPULATION DOMAINS FOR COST-BASED REACTIVE SYNTHESIS 5

• Transito,a corresponds to the actions in Umot
s that move

the end-effector to the pre-image of applying the action a
to an object o ∈ O,

• Transferl corresponds to the actions in Umot
s that move

the end-effector to a location of interest l ∈ L.
The Transit action is only useful when taken from a state

v ∈ V with no object in the end-effector, and the Transfer
action is only useful when there is an object in the end-effector.
Otherwise, we disallow such transitions. Note that As is only
a subset of the actions that the physical robot can perform.
For example, the robot may choose to transit to an arbitrary
location in its configuration space in the air. Such actions are
not useful for task completion and thus omitted.

Note that objects in Else can have an infinite number of
configurations and may be blocking each other. Instead of
listing all possible blocking scenarios, we assume that at least
one primitive as is available for at least one of the objects o
in Else. This assumption allows us to eventually access every
object in Else by moving the objects that block it to other
locations of interest.

C. Robot Action Cost

We complete the abstraction by finding the cost function F
(Line 4-6 in Algorithm 1). For problems where resource cost
is not considered, the steps in this subsection are still needed
to find the availability of the robot actions.

A fixed cost is assigned to Grab and Drop actions as they
correspond to primitive actions GRASP and PLACE. The cost of
actions in Umot

s depends on the path the robot takes to perform
them. Longer paths often require more energy. We use motion
planning to find the cost for the transfer and transit actions.
Note that the number of configurations that map to a given
v ∈V may be infinite. For a state with Lo = Else, o can be
placed anywhere other than the locations of interests. Thus
motion planning for every object configuration is infeasible.
In practice, we sample the configurations the objects can take
(Line 4 in Algorithm 1). In section VI, we show that a sampled
set of the tabletop locations is sufficient to produce a correct
abstraction for a practical problem.

Here we discuss three approaches for finding the cost of
Transfer and Transit actions: a strawman brute-force approach,
a start-goal based approach that is fast but may lead to
failed synthesis, and a recursive start-goal based approach
that provides a good approximation for the cost.

1) Brute Force Approach: We can find the action cost
function by motion planning for each action from each state.
This requires a motion planning call for each state-action pair.
However, the number of states is exponential in the number of
objects. Thus an exponential number of motion planner calls
are needed for this approach, making it intractable.

2) Start-Goal Based Approach: To make the construction of
the abstraction tractable and efficient, we rely on two insights.
First, if across multiple motion planning calls, the robot end-
effector is holding the same object with the same grasp,
collision checking against static obstacles such as tables and
immovable objects only needs to be performed once. Second,
moving an object between the same pair of start and goal
configurations could use the same path, if none of the other

Algorithm 2 Start-Goal Based Approach

1: procedure CONSTRUCTCOSTMAPSG(L+,O)
2: M← PRM(L+,O)
3: Initialize cost map M : L+×L+→ R
4: for all (l1, l2) ∈ L+ do
5: Create obstacles at L+\{l1, l2}
6: M (l1, l2)← Cost(BestPath(M, l1, l2))
7: return M
8: procedure GETCOST(M ,Before,After)
9: {(s,g)}← All pairs associated with Before and After

10: return maxs,g(M (s,g))

movable objects are blocking the path. Using these insights,
we provide a start-goal based approach for finding the cost of
actions.

Our algorithm is shown in Algorithm 2. For each possible
object-grasp as well as the arm with no object grasped, we
construct a probabilistic roadmap M in the configuration space
of the robot, while only considering collision with static
obstacles (Line 2). This roadmap is initialized with all of
the locations L+ that include the locations of interest L and a
set of configurations that represent Else. The roadmap is grown
such that all the initial configurations are connected. For each
pair of configurations in L+, we find the best (lowest-cost) path
in M given that the movable objects exists in all other places
(Line 5, 6). This path is guaranteed to be available regardless
of where the objects are placed. We store the cost of these
paths in a costmap M .

To find the cost of a Transit or Transfer action from a
state, we find Lee before and after the action. We then gather
all the configurations corresponding to these Lee values in
the roadmap. For Lee = Else, multiple configurations may be
included. We then use the maximum cost from all instantiations
of (s,g), where s and g are configurations before and after the
action, as the cost of the action (Line 9, 10).

Definition 5. The domain D = (C,c0,Us,Ue,FD,Π,ρD) simu-
lates the abstraction G = (V,v0,As,Ae,F,Π,ρ) with respect
to the robot actions under the mapping γ if for every
c1 ∈ C, v1,v2 ∈ V and as ∈ As such that γ(c1) = v1 and
as(v1) = v2, there exists us ∈Us such that γ(us(c1)) = v2 and
FD(us,c1)≤ F(as,v1).

Lemma 6. The manipulation domain D simulates the abstrac-
tion G constructed with the start-goal based approach.

Proof. Each time we record a cost in F , we have an evidence
trajectory in the roadmap that is valid even if objects exist in
all of the locations in consideration. For any configuration c,
if an action as exists in the abstraction from γ(c), then we can
find the corresponding evidence trajectory in the roadmap that
costs F(γ(c),as). Thus to execute the corresponding action
us, the resource we need, FD(c,us), does not need to exceed
F(γ(c),as).

This computation is much more efficient than the brute-force
approach. The number of roadmaps required is linear in the
number of objects and grasps, and the number of start-goal
pairs is quadratic in |L+|. Thus we reduce the total runtime

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

Algorithm 3 Recursive Start-Goal Based Approach

1: procedure CONSTRUCTCOSTMAPREC(L+,O)
2: Initialize cost map M : L+×L+→ 2Conditions×R

3: M← PRM(L+,O)
4: for all (l1, l2) ∈ L+ do
5: M (l1, l2)← ConditionalBestPath(M, l1, l2,L+,{})
6: return M
7: procedure CONDITIONALBESTPATH(M, l1, l2,L+,obs)
8: Create obstacles at obs
9: P = BestPath(M, l1, l2)

10: new = {l ∈ L+\obs | obstacle at l collides with P}
11: Add (new,Length(P)) to M (l1, l2)
12: for all l ∈ new do
13: ConditionalBestPath(M, l1, l2,L+,obs∪{l})
14: procedure GETCOST(M ,Before,After,v)
15: {(s,g)}← All pairs associated with Before and After
16: return maxs,g(minv|=conditionM (s,g,condition))

from an exponential to only a cubic number of motion-planner
calls.

3) Recursive Start-Goal Based Approach: The above start-
goal based approach gives a very rough over-approximation
of action cost since we assume that objects always exist at all
the other locations. This presents two issues: (i) some valid
actions are deemed impossible, and (ii) the abstraction does not
maintain insight on which location is causing a blocking. For
example, if an object at location l1 is blocking a path between
l2 and l3, then the abstraction should capture this relation to
allow the synthesis tool to infer that the objects in l1 need to
be removed to allow movement from l2 to l3.

We thus modify Algorithm 2 and present Algorithm 3. The
key modification is that the costmap M no longer stores a
single cost for a start-goal pair. Instead, it stores conditional
action costs, where each condition is essentially a set of
locations that need to be free of objects.

During costmap construction, for each start-goal pair, we
now find the best path conditioned on where obstacles are. For
a given set of locations with obstacles (initially empty), we
compute the best (lowest-cost) path P in M (Lines 10, 11).
We then perform collision checking for P against obstacles
at the other locations of interest, and record the new locations
new where collision occurs (Line 12). We add a rule indicating
that if obstacles do not exist at these locations, the cost of the
action is the cost of P (Line 13). Then, recursively for each
location in new, we find the shortest path given that obstacles
are added there (Line 15).

When retrieving the cost, we now check if the abstraction
state v satisfies the condition. The cost between two locations
s and g is the minimum cost of all the satisfying rules.

Lemma 7. The manipulation domain D simulates the ab-
straction G constructed with the recursive start-goal based
approach.

Proof. The proof is identical to that of Lemma 6.

In the worst case, this algorithm performs the same order of
motion planning calls as the brute-force algorithm. In practice,
however, we see that the least-cost path between the start and

goal in the roadmap is often collision-free, and recursion rarely
reaches the point where all objects are placed. In Sec. VI, we
see that this approach is indeed tractable.

V. REACTIVE STRATEGY SYNTHESIS

In the previous section, we described how the abstraction is
constructed, thus solving Problem 2. For the robot to perform
reactive tasks, i.e., to solve Problem 1, we first perform reactive
synthesis on the abstraction to find a discrete strategy. Then,
we map this strategy back to the continuous domain.

A. Discrete Reactive Synthesis

The technique for performing reactive synthesis problem
on the abstraction is described in [6]. Here, we provide a
brief overview. First, the LTLf formula ϕ is converted into a
deterministic finite automaton Aϕ . Then, Aϕ is combined with
the abstraction G to build a quantitative game played between
the robot and the human, where the robot wins the game if a
final state is reached. A fixed-point approach, i.e., backward
propagation from the final state until a fixed point is reached, is
used to compute a strategy P that minimizes the resource cost
while forcing the game into a final state. Strategy P guarantees
the completion of ϕ with a resource cost at most Ep, i.e., Ep
is reached only against the worst k human actions. Hence, P
is insured to be a winning strategy if Ep ≤ E. Otherwise, there
is no guarantee that P is winning, but note that ϕ may still be
achieved with a cost less than E under P if the human does
not perform the worst actions.

B. Mapping to a Continuous Strategy

Once a (winning) strategy P is synthesized on the abstraction
G, we map P to the manipulation domain D. For an execution
hT , we record the abstraction state whenever γ(hT (t)) changes.
This produces a trace on the abstraction. We can then use this
trace to find a corresponding abstraction action as and execute
it on the robot in D. Note that P and Ep are optimal on G and
may be sub-optimal on D.

In practice, a visual system can be used to monitor the state
of the manipulation domain and translate this to an abstraction
state. Grab and Drop actions are implemented by calling the
corresponding GRASP and PLACE primitives, which involve
performing pre-determined Cartesian trajectories using inverse
kinematics, followed by closing and opening of the gripper.
For Transit and Transfer actions which correspond to Umot

s , a
sampling-based optimizing motion planner is called at runtime.
Since every action as chosen by the strategy has a finite cost
F(as,v), a probabilistic complete sampling-based optimizing
planner is able to find such a path if given enough time.

Note that if objects in Else are blocking other objects in
Else, we rely on the assumption in Sec. IV that at least one
of these objects is reachable. Thus, when a Transit action to
an object in Else is needed, we perform motion planning for
all objects we are interested in at runtime and choose the best
outcome to perform.

Theorem 8. For a given LTLf task ϕ , a resource cost bound
E, a bound on human actions k, a manipulation domain D
and an abstraction G, if a strategy P is a winning strategy

HE et al.: AUTOMATED ABSTRACTION OF MANIPULATION DOMAINS FOR COST-BASED REACTIVE SYNTHESIS 7

(a) (b) (c) (d) (e)

Fig. 2: Execution of the arch construction task. (a) Robot places the first support block. (b) The human incorrectly moves the black block to
the support location. (c) The robot moves the black block away (behind gripper) and then places the second white support. (d) The human
moves away a support. (e) The robot recovers the support and places the black block on top. Video: https://youtu.be/UJ5p-Lq4e7A.

for (G,ϕ,E,k), D simulates G for the robot actions with a
mapping γ , and G simulates D for the human actions with γ ,
then there is a winning strategy for (D,ϕ,E,k).

Proof. Let Pcont be the continuous strategy in D that is mapped
from the winning strategy P as described above. Pcont is winning
if every trace ht : [0, t]→C under Pcont results in the completion
of the task with total resource consumption less than E as long
as the human performs no more than k actions. Under Pcont,
γ ◦ht is a valid trace in G as every transition is either a robot
action suggested by the abstraction or a human action modeled
by the abstraction (Lemma 4). The task must also be completed
by ht in D because, by Lemma 3, the corresponding trace
γ ◦ ht in G generates an identical sequence of propositional
assignments that satisfies ϕ . Finally, the total resources used
is within the bound E because, by Lemmas 6 and 7, every
robot action performed in D accumulates no more cost than the
corresponding action in G. Hence, Pcont is winning in D.

Thus, we can solve Problem 1 by constructing an abstraction
G per Sec. IV, synthesizing a winning strategy P on G, and
mapping P to the continuous manipulation domain D.

VI. EXPERIMENTS

To demonstrate the effectiveness and efficiency of abstraction
construction, we implemented our abstraction algorithm with
both options of the start-goal based approach and the recur-
sive start-goal based approach within the reactive synthesis
framework in [6]. Roadmap construction was performed using
MoveIt! with a custom OMPL planner. A UR5 robot was used
to demonstrate the strategy. Object locations were captured
using a Vicon system. Online motion planning was performed
with MoveIt! with RRT* [21].

We tested our implementation on two scenarios where the
UR5 had to manipulate blocks. Two grasp primitives were
provided, one approaching from the top and one from the side.
The two scenarios demonstrate the power of the automated
abstraction construction technique and show the trade-offs
between Algorithms 2 and 3.

A. Arch Construction

The first scenario we examined is the arch example in Fig.
1. The robot must create an arch with white blocks as supports
and the black block on top. The LTLf formula for this task is
ϕArch in (1). The human is allowed 5 actions.

In this scenario, synthesis with the start-goal based abstrac-
tion fails to find a valid solution. This happens because we
assume movable obstacles always exist at all locations besides

the ones we are moving from and to. Thus, to place an object
at the support, the algorithm assumes an object is at the top,
causing a collision in the path. This shows that the non-recursive
start-goal abstraction may not be able to find a solution due to
the overly conservative approximation.

On the other hand, synthesis with the recursive start-goal
based abstraction was able to find a valid solution. In 10 trials,
the abstraction computation took 485.0± 68.3 seconds and
the strategy resource cost was 313.5±46.3. Fig. 2 shows an
execution of the strategy, illustrating the completion of the
arch despite human interferences.

Note that in this execution, the robot specifically reached
for the black block using a side grasp, knowing that it is more
efficient for placing the top of the arch. Insights such as which
grasp to use can be difficult for a human to gather, especially
if the number of objects is large. The automation of abstraction
construction allows the user to avoid manually writing up the
availability of actions and their costs.

B. Straight Line Alignment

The second scenario we examined is a pick-and-place task
with three objects and five locations of interest placed in a
cross shape, as shown in Fig. 3a. The task requires all three
blocks to be aligned in a straight line with the black block in
the middle. This task is expressed as ϕline =

♦
(

pblack,center∧
(
(pwhite,1∧ pwhite,3) ∨ (pwhite,2∧ pwhite,4)

))
.

The human is allowed five actions. The reactive synthesis tool is
run until convergence to examine the least amount of resource
bound needed for a winning strategy to be found.

Both the non-recursive and recursive approaches were able
to produce an abstraction in all the 10 trails. The computation
times were 79.1 ± 4.8 and 449.7 ± 22.9 seconds for the
non-recursive and recursive abstractions, respectively. These
abstractions resulted in resource bounds of 593.4±37.6 and
559.6±34.7 units, respectively. Such a difference (trade-off) in
the results of the two methods is expected since the recursive
approach works harder in identifying blocking objects and
finding alternative ways to perform the action, leading to higher
computation times in the abstraction step. This greater effort is
rewarded by lower resource bounds in the synthesis step. Given
this trade-off, one can imagine using the start-goal method
first. If no winning strategy can be found, then the recursive
approach can be employed.

Fig. 3 shows an execution of this task with an abstraction
from the recursive approach. We can see that the robot initially

https://youtu.be/UJ5p-Lq4e7A

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2018

(a) (b) (c) (d) (e)

Fig. 3: Execution of the line task. Locations are marked in blue. (a) Initial condition (top view). (b) The robot places the white objects at 1
and 3. (c) The robot reaches for the black object to place at the center. (d) The human tries to do the task using 2 and 4, but places one too
far away. (e) The robot fixes the human’s mistake by moving the white block back to 4. Video: https://youtu.be/EGjrkirLYYs.

tried to complete the task using locations 1 and 3. Yet the
human wanted to complete the task using locations 2 and 4,
and misplaced an object in the process. The robot completes
the task efficiently by correcting the human’s mistake.

To further analyze the performance of the algorithms, we
iteratively added obstacles to the spaces in between the
locations of interest L (1-4) in Fig. 3a. The results (mean
and standard divination) based on 10 trials are shown as in Fig.
4. Overall, we observe the general trend of lower abstraction
times and higher resource bounds for the non-recursive method
compared to the recursive approach holds for all cases. A
surprising observation is that the abstraction times are not
significantly affected by the number of obstacles. That is
because once a roadmap is generated, the time to find a path
only depends on the blocking relations of the objects in L, not
the ones outside of L. These obstacles, however, can affect the
resource cost. Depending on their locations, they can either
increase it due to longer paths or reduce it due to causing more
roadmap samples in the free space.

Fig. 4: Results for ϕline with increasing number of obstacles.

VII. CONCLUSION

In this paper, we introduce the first automated methods
of abstraction construction of a manipulation domain for the
purposes of reactive synthesis. We prove that these abstractions
guarantee the correctness of the computed strategies by the
reactive synthesis algorithms. Despite the focus on finite tasks
with resource cost limits, our manipulation abstractions are
general to all reactive synthesis formulations such as [2]–[4]
and can be used to extend the capabilities of these approaches
to the manipulation domain. Some possible future directions for
this work are: a symbolic approach to reactive synthesis, human-
robot task conflict resolution, and probabilistic abstraction for
noisy manipulators.

REFERENCES

[1] D. Harel and A. Pnueli, “On the development of reactive systems,” in
Logics & Models of Concurrent Sys. Springer, 1985, pp. 477–498.

[2] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE transactions on robotics,
vol. 25, no. 6, pp. 1370–1381, 2009.

[3] C. I. Vasile and C. Belta, “Reactive sampling-based temporal logic path
planning,” in Int. Conf. on Robotics & Automation. IEEE, 2014, pp.
4310–4315.

[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Efficient reactive controller
synthesis for a fragment of linear temporal logic,” in Int. Conf. on
Robotics and Automation. IEEE, 2013, pp. 5033–5040.

[5] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[6] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Reactive synthesis
for finite tasks under resource constraints,” in Int. Conf. on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 5326–5332.

[7] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit, “Reactive high-level behavior synthesis for an atlas humanoid
robot,” in Int. Conf. on Robotics & Automation. IEEE, 2016, pp.
4192–4199.

[8] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L. E. Kavraki,
“SMT-Based Synthesis of Integrated Task and Motion Plans from Plan
Outlines,” Int. Conf. on Robotics & Automation, pp. 655–662, 2014.

[9] C. Finucane, G. Jing, and H. Kress-Gazit, “Ltlmop: Experimenting with
language, temporal logic and robot control,” in Intelligent Robots and
Systems (IROS). IEEE, 2010, pp. 1988–1993.

[10] V. Raman and H. Kress-Gazit, “Explaining impossible high-level robot
behaviors,” IEEE Transactions on Robotics, vol. 29, pp. 94–104, 2013.

[11] P. Tabuada, G. J. Pappas, and P. Lima, “Compositional abstractions of
hybrid control systems,” Discrete event dynamic systems, vol. 14, no. 2,
pp. 203–238, 2004.

[12] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic
models for incrementally stable switched systems,” IEEE Transactions
on Automatic Control, vol. 55, no. 1, pp. 116–126, 2010.

[13] J. A. DeCastro and H. Kress-Gazit, “Guaranteeing reactive high-level
behaviors for robots with complex dynamics,” in Int. Conf. on Intelligent
Robots and Systems. IEEE, 2013, pp. 749–756.

[14] E. A. Gol, X. Ding, M. Lazar, and C. Belta, “Finite bisimulations
for switched linear systems,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3122–3134, 2014.

[15] M. Guo, K. H. Johansson, and D. V. Dimarogonas, “Revising motion
planning under linear temporal logic specifications in partially known
workspaces,” in Int. Conf. on Robotics and Automation. IEEE, 2013,
pp. 5025–5032.

[16] M. Lahijanian, M. R. Maly, D. Fried, L. E. Kavraki, H. Kress-Gazit, and
M. Y. Vardi, “Iterative temporal planning in uncertain environments with
partial satisfaction guarantees,” IEEE Transactions on Robotics, vol. 32,
no. 3, pp. 538–599, 2016.

[17] Y. Yang and O. Brock, “Elastic roadmapsmotion generation for au-
tonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1, pp.
113–130, 2010.

[18] C. Bowen and R. Alterovitz, “Closed-loop global motion planning for
reactive execution of learned tasks,” in Int. Conf. on Intelligent Robots
and Systems. IEEE, 2014, pp. 1754–1760.

[19] K. He, M. Lahijanian, L. E. Kavraki, and M. Y. Vardi, “Towards
manipulation planning with temporal logic specifications,” in Int. Conf.
Robotics and Automation. IEEE, 2015, pp. 346–352.

[20] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Int. Conf. on Artificial Intelligence.
AAAI Press, 2013, pp. 854–860.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

https://youtu.be/EGjrkirLYYs

	Introduction
	Related Work
	The Reactive Synthesis Problem
	Manipulation Domain
	Finite-Horizon Robot Task
	Resource Cost and Action Bounds
	Strategy
	Manipulation Reactive Synthesis Problem
	Abstraction
	Abstraction Construction Problem

	Abstraction Construction
	Abstraction States
	Human and Robot Actions
	Robot Action Cost
	Brute Force Approach
	Start-Goal Based Approach
	Recursive Start-Goal Based Approach

	Reactive Strategy Synthesis
	Discrete Reactive Synthesis
	Mapping to a Continuous Strategy

	Experiments
	Arch Construction
	Straight Line Alignment

	Conclusion
	References

